Сторінка
28
У просторі, так само, як і на площині, пряма задається двома точками. Прямі можуть бути паралельними або перетинатися, тоді вони лежать в одній площині.
Прямі в просторі, які лежать у різних площинах, та не паралельні і не перетинаються, називаються мимобіжними.
Розміщення прямої і площини.
Пряма і площина можуть перетинатися. Запис: .
Пряма може бути паралельною площині. Запис: . У цьому випадку пряма і площина спільних точок не мають.
Пряма, яка перетинає площину, перпендикулярна до цієї площини, якщо вона перпендикулярна до будь-якої прямої, що лежить у цій площині, і проходить через точку перетину. Запис: .
Відстанню від точки до площини називається довжина перпендикуляра, проведеного з цієї точки до площини.
Дві площини, що перетинаються, називаються перпендикулярними, якщо третя площина, перпендикулярна до прямої перетину даних площин, перетинає їх по перпендикулярних прямих.
II. Закріплення матеріалу.
Задачі на розглядання
Задача 1. Назвіть (рис. 1):
а) точку перетину прямої АD і площини DD1C;
б) лінію перетину площин АDD1 і DD1С;
в) в яких площинах лежить точка В;
г) три прямі, що проходять через точку D, перетинають четверту в точках А, В, С.
Рис. 1 Рис. 2
Доведіть, що точки А, В, С і D лежать в одній площині.
Задача 2 (рис. 2).Назвіть:
а) точку перетину прямої BDі площини АВС;
б) лінію перетину площини АВD і СВD;
в) в якій площині не лежить точка С.
Прямі АВ і АС перетинаються з деякою прямою в точках К і М відповідно. Доведіть, що М, К, С, і В лежать в одній площині.
Задача 3. Назвіть (рис. 3):
а) точку перетину прямої МС і площини ВВ1С;
б) лінію перетину площин МС1С і ВСВ1;
в) в яких площинах лежить пряма МD.
Доведіть, що точки А, В, С і D лежать в одній площині.
Задача 4.Побудуйте лінію перетину (рис. 4):
а) площини АВС і прямої МК;
б) площини МКВ і АВ.
Рис. 3 Рис. 4 Рис. 5
Задача 5.Чи лежить точка Кв площині паралелограма АВСD, якщо N належить прямій AD, а М належить прямій ВС (рис. 5)?
Задачі на уяву
1. Чи можуть дві різні площини мати три спільні точки, що не лежать на одній прямій?
2. Чи можуть дві різні площини перетинатися по двом прямим?
3. Прямі а, b, c не належать одній площині, але проходять через одну точку. Скільки різних площин можна провести через ці прямі, взяті по дві?
4. Площини перетинаються по прямій а. Пряма b, що лежить у площині, перетинає площину в точці А. Де лежить точка А?
5. Точка А і В та пряма СD не лежать в одній площині. Яке взаємне розміщення прямих CD i AB?
Завдання на розуміння мови математичних символів
1. Дано вирази
1) Серед цих виразів знайдіть помилкові.
2) Який із записів відповідає висловленню:
а) площини перетинаються по прямій а;
б) точка А є точкою перетину площини і прямої а?
2. Як можуть розміщатися прямі а та АВ у площинах і ? Запишіть мовою символів.
ІІІ. Домашнє завдання.
Вивчити опорний конспект, розв’язати задачі.
Запишіть висловлення мовою символів:
а) точка А перетинає площину в точці В;
б) прямі КА і КВ перетинаються в точці К;
в) пряма КН перпендикулярна до прямої МС. На перетині прямих лежить точка К.
Тестові завдання
1. а) Дано куб АВСДА1В1С1Д1. яка з точок не лежить у площині квадрата АВСД?
1) М; 2) К; 3) N; 4) Р.
б) Дано тетраедр АВСS. Яка з точок не лежить у площині трикутника АВС?
1) А; 2) Z; 3) Y; 4) X.
2. а) Якій із вказаних площин куба не належить точка А?
1) ВСД; 2) А1С1С; 3) ВВ1А1; 4) ВСС1.
б) Якій із вказаних площин тетраедра належить точка У?
1) ASB; 2) ASC; 3) BSC; 4) ZBC.
3. У просторі дано прямі а та в, які перетинаються в точці С. Скільки різних площин можна провести через ці прямі?
1) дві; 2) безліч; 3) одну; 4) жодної.
4. а) Площини тетраедра АSС і АSВ перетинаються по прямій:
1) AS; 2) AB; 3) AC; 4) SC.
б) Площини куба АВС і В1ВД перетинаються по прямій:
1) ВС; 2) ВД; 3) АВ; 4) ВВ1.
5. а) Площину ABS тетраедра можна задати прямими:
1) АВ і АS; 2) АВ і АС; 3) АС і ВС.
б) Площину грані АА1Д1Д куба АВСДА1В1С1Д1 можна задати прямими:
1) Д1Д і ДС; 2) АД і АВ; 3) АА1 і АД; 4) А1Д1 і Д1С1.
Для класів природничого профілю
Тема. Прямі та площини у просторі
МЕТА
Мета теми – закласти основи для навчання учнів конструюванню геометричних тіл, дослідженню їх властивостей і вимірюванню геометричних величин, що пов’язані з ними; продовжити реалізацію ідеї моделювання реальних об’єктів і відношень між ними за допомогою найпростіших просторових геометричних фігур і відповідних математичних відношень; сприяти розвитку в учнів навичок логічного виведення, уявлень про аксіоматичний метод.
ОСНОВНІ ВИМОГИ
В результаті вивчення теми учні повинні вміти:
- встановлювати у просторі взаємне розміщення прямих і площин, зокрема паралельність і перпендикулярність прямих, прямої і площини, двох площин;
- будувати зображення фігур і на зображеннях виконувати нескладні побудови (елементів фігур, точок перетину прямої та площини, двох площин, переріз куба, тетраедра тощо);
- обчислювати відстані і кути у просторі;
Інші реферати на тему «Математика»:
Системи лінійних диференціальних рівнянь. Загальні положення
Випуклість і вгнутість графіка функції, точки перегину. Асимптоти графіка функції
Задачі, що приводять до похідної. Визначення похідної, її геометричний і механічний зміст
Похідна за напрямком і градієнт функції, основні властивості
Інтегрування виразів, що містять тригонометричні функції. Приклади первісних, що не є елементарними функціями. Використання таблиць неозначених інтегралів