Сторінка
32

Особливості вивчення математики в профільних класах у сучасних умовах

Після введення аксіом та наслідків з них обов’язково ознайомити учнів з технікою виконання найпростіших стереометричних креслень та побудовою перерізів. При розгляді взаємного розташування прямих у просторі доцільно довести теореми про транзитивність паралельності прямих у просторі, про рівність двох кутів із спів напрямленими сторонами, дати учням уявлення про напрям у просторі, про кути між мимобіжними прямими. Корисним буде розв’язування задач на побудову у просторі: проведення через точку прямої, паралельної до даної, прямої, що перетинає дану під заданим кутом, прямої, мимобіжної до даної, проведення через точку прямої, паралельної до даної площини і площини, паралельної даній прямій. Доцільно обговорити з учнями число розв’язків задач на побудову.

Після теореми про відрізки паралельних прямих, що містяться між двома паралельними площинами слід розглянути просторову теорему Фалеса. Що стосується відстаней у просторі, то, окрім відстаней між різними геометричними об’єктами (точки, прямі, площини, фігури, мимобіжні прямі), слід розглянути геометричні місця точок простору, пов’язані з відстанями, способи знаходження відстаней між фігурами у просторі.

Формування просторових уявлень учнів є головним завданням даної теми. Тому важливе місце треба відвести їх навчанню зображати просторові фігури на площині, а також виконувати побудови на зображеннях. Перш за все мається на увазі побудова різних елементів фігур (медіан, середніх ліній та ін.), точок перетину прямої і площини, двох площин. Крім того, достатню увагу треба звернути на побудову перерізів куба, паралелепіпеда, тетраедра. Безумовно ці тіла повинні з’явитися якомога раніше, тому що на них зручно ілюструвати усі поняття і твердження.

Конспект уроку

Тема уроку. Основні поняття стереометрії. Просторові тіла. Аксіоми стереометрії.

Мета уроку: розширити і систематизувати відомості про методи побудови курсу геометрії, про властивості основних геометричних фігур на площині та в просторі; розвивати кмітливість, творчу уяву, інтерес до геометрії.

Освоївши матеріал уроку учні повинні:

знати:

- аксіоми стереометрії та наслідки з них;

вміти:

- застосовувати аксіоми та теореми-наслідки з них до розв’язування задач.

Хід уроку

І. Вступне слово вчителя

Геометрія – одна з найдавніших наук, яка вимагає вміння логічно мислити, застосовувати теоретичні знання на практиці. До сьогоднішнього дня ви вивчили планіметрію. У цьому році ви починаєте новий розділ геометрії – стереометрію. Сьогодні ми з вами трохи пограємось на уроці. Усі знають, що найкращий спосіб вивчити що-небудь – це відкрити самому. Тому бажаю вам сьогодні якнайбільше відкриттів у знаннях та здобуття найвищих досягнень.

ІІ. Пояснення нового матеріалу

Запишіть у зошиті тему уроку. Розділ геометрії, в якому вивчають фігури у просторі, називається стереометрією. Поняття точки, прямої і площини в стереометрії пер­вісні, не означувані. У геометрії площину уявляють необмеженою, ідеально рівною і гладенькою, що не має ніякої товщини. В планіметрії розглядають тільки одну площину. В стереометрії доводиться розрізняти багато площин.

Зображають площини у вигляді паралелограмів або кусків площини, обмежених довільними замкненими лініями. Позначають їх звичайно грецькими буквами тощо.

У стереометрії вивчаються властивості як плоских геометричних фігур, так і неплоских. Фігура називається неплоскою (просторовою), якщо не всі її точки лежать в одній площині. Приклади неплоских фігур: куб, конус, куля.

Сформулюємо аксіоми, що виражають основні властивості точок, прямих і площин у просторі.

1. Через будь-які три точки простору, що не лежать на одній прямій, можна провести площину, і до того ж тільки одну.

2. Якщо дві різні площини мають спільну точку, то вони перетинаються по прямій, яка проходить через цю точку.

3. Якщо дві різні прямі мають спільну точку, то через них можна провести площину, і притому тільки одну.

С1 С2 С3

}

(Учні в зошитах креслять схему).

Введемо основні позначення.

Прямі

Пряма і площина

Площини

ІІІ. Закріплення нового матеріалу.

Гра „Лото”

Учням роздаються картки лото, на яких є відповіді на запитання. Учні називають у довільному порядку числа від 1 до 15. Біля правильної відповіді проставляється номер запитання. За кодами першого рядка створюються команди.

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38  39  40  41 


Інші реферати на тему «Математика»: