Сторінка
17
2.3. КУРС МАТЕМАТИКИ ДЛЯ КЛАСІВ ПРИРОДНИЧОГО ПРОФІЛЮ
Вчитель математики у процесі викладання математики має максимально враховувати профіль навчання. Розглянемо, у чому полягають особливості курсу математики природничо-наукового профілю.
Даний курс орієнтовано на учнів з науковим стилем мислення, які обрали для себе хімічний, біологічний, географічний та інші напрямки. Для цих областей науки математика відіграє роль апарата, спеціального засобу для вивчення закономірностей навколишнього світу. Зауважимо, що математизація відповідних наук стосується лише окремих їх областей, в основному найбільш сучасних, тоді як інші області майже не використовують математичних знань. Тому даний курс має бути побудований з урахуванням того, що математика для учнів зазначеної категорії є хоча й необхідним, але не найважливішим предметом. Цей курс повинен забезпечувати оволодіння конкретними математичними знаннями, що дозволять, зокрема, виробити уявлення щодо застосування математики у профілюючій науці і достатніми для вивчення математики у вищому навчальному закладі відповідного напрямку.
Для природничих наук важливу роль відіграють у наш час кількісні характеристики реальних процесів і відповідні кількісні моделі, для дослідження яких необхідні традиційні розділи математики поряд з початками математичного аналізу і елементами теорії ймовірностей і математичної статистики [21].
Учням даного профілю рекомендовано особливу увагу приділяти формуванню обчислювальних навичок і вмінь, поєднувати вивчення алгебри і початків аналізу з обробкою даних, одержаних під час проведення лабораторних і практичних робіт на уроках фізики, хімії, біології. Цілком слушною є пропозиція приділити особливу увагу застосуванням похідної та інтеграла до розв’язування прикладних задач, більш широко ознайомити учнів з розв’язуванням диференціальних рівнянь показникового зростання та гармонічних коливань. Наголоси в шкільному курсі математики слід робити не на розв’язанні тих чи інших диференціальних рівнянь, а на моделюванні реальних процесів за допомогою диференціальних рівнянь, тобто складанні рівнянь [9].
Курс математики для 10-11 класів природничого напряму вивчається за „Програмою з математики для 10-11-х профільних класів природничого напряму”, авторами якої є Бродський Я.С., Павлов О.Л., Сліпенько А.К., Афанасьєва О.М., із розрахунку 5 годин на тиждень (в тому числі – алгебра та початки аналізу – 3 години, геометрія – 2 години на тиждень) [8].
Курс математики, призначений для профілів природничого напрямку, забезпечуючи гармонійний розвиток образного і логічного мислення, повинен особливу увагу приділяти з’ясуванню ролі математики в сферах її застосувань. Насамперед це означає, що учні повинні оволодіти простими навичками математичного моделювання. Саме такий вид діяльності має бути головним у навчанні майбутніх інженерів, техніків, технологів, конструкторів, механіків, природознавців тощо. Досягти цього можна за рахунок зваженого компромісу між строгістю і доступністю викладення матеріалу, а також його прикладною спрямованістю.
Вивчення геометрії у 10-11 класах природничого напряму передбачається за традиційною схемою. Усі відмінності спрямовані на забезпечення прикладної спрямованості навчання, розвинення просторових уявлень. Цими обставинами визначається і розгляд видів геометричних тіл та їх властивостей. Встановлення спорідненості між циліндрами і призмами, конусами і пірамідами дозволяє, з одного боку, заощадити час, а з іншого – розширити види фігур, з якими учні ознайомляться у курсі геометрії. Вчитель має орієнтуватися на розгляд найважливіших засобів конструювання тіл, розгляд їх різноманітних властивостей, зокрема симетрії, перерізів [24].
Розглянемо деякі методичні зауваження щодо процесу викладання математики у 10-11 класах природничого напрямку.
1. Враховуючи, що в основній школі вивчення наближених обчислень передбачається наприкінці 9-го класу, можна впевнено стверджувати, що відповідні навички, такі важливі для природничо-наукового профілю, ще не будуть сформовані в десятикласників. Тому не завадило б передбачити це в змісті матеріалу, що вивчається в 10 класі.
2. При вивченні теми „Функції, їх властивості та графіки” необхідно перш за все розвивати у учнів вміння читати графіки. Наприклад, необхідно за графіком зміни величини вміти визначати моменти часу, в які ця величина приймає задане, найбільше чи найменше значення, порівнювати з іншою величиною, прогнозувати поведінку величини „в майбутньому” тощо. Для формування таких навичок необхідно навчити учнів за графіком функції встановлювати її неперервність, точки розриву, проміжки зростання та спадання, знакосталості, найбільше та найменше значення. При цьому необхідно приділити увагу побудові графіків функцій за допомогою геометричних перетворень.
3. Поняття границі та неперервності функції формуються на основі наочно-інтуїтивних уявлень про них. Ці поняття слід пов’язувати з математичним описом фізичних процесів (неперервних та розривних). Обчислення границь слід розглядати лише у об’ємі, необхідному для формування поняття границі та неперервності. При вивченні властивостей неперервних функцій особливу увагу слід приділити властивості неперервної на відрізку функції, що приймає на його кінцях значення різних знаків (ілюструючи цю властивість на графіку). На цій властивості засновано метод інтервалів для розв’язання нерівностей.
Інші реферати на тему «Математика»:
Знакочергуючі ряди. Ознака Лейбніца. Оцінка залишку ряду. Абсолютна і умовна збіжності знакозмінних рядів
Диференціальні рівняння вищих порядків
Властивості степеневих рядів. Неперервність суми. Інтегрування і диференціювання степеневих рядів
Задача Коші. Лінійні диференціальні рівняння із сталими коефіцієнтами. Загальний та частинний розв’язки
Власні числа і власні вектори квадратної матриці, характеристичне рівняння