Сторінка
16
а) при наявності великої кількості статистично стійких дослідів;
б) при наявності досліду з рівноможливими наслідками.
Для застосувань теорії ймовірностей дуже важливим є вивчення величин, що набувають різні значення в залежності від випадкових обставин, які не можна врахувати, тобто випадкові величини. Випадкову величину доцільно вводити як функцію від наслідків досліду. Слід сформувати в учнів розуміння змісту середніх показників. Вміння орієнтуватися в цих показниках допомагає людині приймати правильні рішення, адекватно сприймати інформацію, що надходить до нього. Статистичний характер навколишніх явищ не може бути розкритий без розуміння міри мінливості, тому виникає необхідність у кількісному оцінюванні розкиду статистичних даних.
7. У процесі вивчення теми „Об’єми та площі поверхонь геометричних фігур” повинні бути розглянуті різні методи обчислення об’ємів і площ поверхонь. Особливу увагу необхідно приділити методу розкладання, який має велике практичне значення. Його суть полягає в роздробленні тіла на частини, об’єми яких легко знайти або з них можна скласти тіло відомого об’єму. Використання аналогії між вимірюваннями площ плоских фігур і об’ємів сприятиме засвоєнню матеріалу учнями. В системі задач на обчислення об’ємів та площ поверхонь необхідно передбачити достатню кількість завдань, що потребують виконання вимірювань, а потім обчислення геометричних величин. Існують різні способи введення поняття площі поверхні тіла. Найбільш природним і придатним для всіх поверхонь, що розглядається в математиці і інтуїтивно зрозумілим для учнів, геометричне означення площі поверхні, що ґрунтується на понятті об’єму.
8. Перед початком вивчення теми „Інтеграл та його застосування” актуалізувати відповідні опорні знання: повторити поняття похідної, фізичний, геометричний зміст. Вивчення інтегрального числення зазвичай починається з розгляду сукупності первісних даної функції, які доцільно трактувати як розв’язок диференціального рівняння у′ = f(x). Бажано поряд з цим рівнянням розглянути диференціальне рівняння y′ = ky, яке широко використовується при опису багатьох процесів. Інтеграл можна вводити як приріст первісної на заданому відрізку чи як границю інтегральних сум. При будь-якому способі викладення матеріалу доцільно якомога раніше вводити формулу Ньютона – Лейбніца. Це дозволить:
- обчислювати визначені інтеграли з початку вивчення теми;
- доводити основні властивості інтеграла, не спираючись на інтегральні суми, що зекономить час та зусилля;
- урізноманітнити вправи на застосування визначеного інтеграла.
9. Тема „Геометричні тіла і поверхні” надає великі можливості для розвитку у учнів геометричної інтуїції, просторових уявлень, формування навиків геометричного моделювання. При її вивченні не можна обмежуватись розглядом невеликого числа фігур і розв’язком в основному задач на обчислення. При введенні видів тіл доцільно використовувати конструктивні означення, тобто визначення, в яких означуваний об’єкт будується, а не виділяється із деякої сукупності за допомогою характерних ознак. Конструктивні означення тіл сприймаються учнями легше, природніше. Конструктивні означення дозволяють встановити спільність між призмами і циліндрами, пірамідами і конусами, що дає переваги при вивченні їх властивостей, при знаходженні об’ємів тіл та площ їх поверхонь. Особливої уваги заслуговують завдання на побудову перерізів тіл.
Курс математики, призначений для профілів гуманітарного напрямку
сприяє:
- становленню загальної культури людини;
- формуванню уявлень про математику як одну з універсальних мов, створених для опису і дослідження дійсності;
повинен:
- враховувати роль образного мислення у процесі пізнання навколишнього світу;
- формувати логічне мислення засобами математики [42].
Розглянемо орієнтовне тематичне планування основного курсу математики для 10 – 11 профільних класів гуманітарного напрямку [За матеріалами мережі Інтернет]. Його розраховано на 210 години учбового часу відповідно до навчального плану для класів цього профілю. При розробці робочої програми слід виходити з часу, що виділяється на предмет в даному навчальному закладі. Орієнтовний тематичний план узгоджено з навчальними засобами, що орієнтовані на профільне навчання. Цим планом передбачається сумісне вивчення геометрії та алгебри і початків аналізу. Такий підхід дозволяє якнайкраще розподілити час на вивчення окремих тем, забезпечити природні, внутрішні та міжпредметні зв’язки.
Для теми „Прямі і площини в просторі” формулюється загальна мета її вивчання, наводяться основні вимоги до рівня її вивчення, її зміст, короткі методичні рекомендації та розроблений конспект уроку, що подано у додатку Б [20; 46; 3].
Основні вимоги до рівня навчання задаються шляхом переліку навичок, якими повинні оволодіти учні. Ці вимоги визначають обов’язковий мінімальний рівень оволодіння темою і спрямовані на діяльнісний підхід в навчанні.
Методичні рекомендації нададуть певну допомогу викладачам щодо розуміння особливостей математичної підготовки для класів даного профілю, а також при виборі різних методичних шляхів і методів викладу матеріалу.
Орієнтовний тематичний план.
Клас |
№ |
Назва теми | Орієнтовна кількість годин на вивчення матеріалу |
1 |
2 |
3 | 4 |
10 |
1. |
Функції, їх властивості та графіки | 16 |
2. |
Похідна та її застосування | 24 | |
3. |
Прямі та площини у просторі | 30 | |
4. |
Тригонометричні функції | 22 | |
Резерв часу та повторення | 10 | ||
Загальна кількість годин | 102 | ||
11 |
5. |
Степенева, показникова та логарифмічна функції | 20 |
6. |
Елементи теорії ймовірностей | 14 | |
7. |
Інтеграл та його застосування | 14 | |
8. |
Геометричні тіла та поверхні | 20 | |
9. |
Об’єми та площі поверхонь геометричних тіл | 24 | |
Резерв часу та повторення | 10 | ||
Загальна кількість годин | 102 |
Інші реферати на тему «Математика»:
Лінійні рівняння першого порядку
Системи лінійних однорідних диференціальних рівнянь з сталими коефіцієнтами
Основні властивості означеного інтеграла. Формула Ньютона- Лейбніца
Властивості степеневих рядів. Неперервність суми. Інтегрування і диференціювання степеневих рядів
Визначені та невласні інтеграли