Сторінка
23

Особливості вивчення математики в профільних класах у сучасних умовах

2. Перший тиждень навчального року в 10 класі корисно повністю присвятити „Тригонометрії трикутника”. Завдяки цьому виникає можливість не тільки провести повторення основних питань геометрії дев’ятирічної школи, але й виявити рівень знань і математичного розвитку учнів. Основним змістом цих уроків є розв’язування комбінованих задач, більш складних, ніж традиційні.

3. Включаючи до програми 10 класу курс „Елементи векторного числення”, вчитель має можливість провести побудову всього курсу геометрії на векторній основі. Однак можна піти й іншим шляхом: дати учням можливість з іншої точки зору поглянути на вже вивчене, використати нові методи при розв’язуванні задач і доведенні теорем. Зокрема, у процесі вивчення геометрії учням корисно дозволяти приводити „векторні” доведення різних теорем, дозволяти не викреслювати креслень, якщо доказову теорему можна легко представити „в уяві”, заохочувати використання плоского креслення перерізу тіла, достатнього для розв’язання поставленої задачі. Тобто, взагалі кажучи, корисно надавати учням свободу у виборі найраціональніших засобів розв’язання поставленої перед ними математичної проблеми.

4. При вивченні об’ємів многогранників і тіл обертання в основному доцільно використовувати формулу Сімпсона. Однак це не виключає використання для цієї мети поняття інтегралу чи принципу Кавальєрі чи, нарешті, традиційного „методу границь”. Слід звернути увагу учнів на необхідність доведення формул об’єму призми і циліндру „методом границь” зважаючи на те, що виведення формули Сімпсона спирається на ці співвідношення. Багато питань курсу можна запропонувати учням для самостійного вивчення. Наприклад, основні поняття і означення, що відносяться до деякого класу фігур – круглі тіла, многогранники тощо, – учні цілком можуть вивчити самостійно.

5. При вивченні теми „Елементи інтегрального числення” можна відштовхуватись від поняття визначеного інтегралу і тільки після його введення і моделювання у вигляді різних фізичних величин чи їх значень перейти до поняття визначеного інтегралу. Такий шлях виправдовує себе, оскільки знаходиться у деякій єдності зі схемою вивчення похідної:

а) задачі реального змісту, що приводять до цього поняття, і метод їх розв’язання;

б) деяка границя і різноманіття її реальних моделей;

в) обчислення цієї границі за її означенням і незручності цього способу обчислення;

г) вивчення властивостей цієї границі, виявлення зручних правил її обчислення і складання таблиць;

д) різні застосування при розв’язуванні задач.

Не слід приділяти особливу увагу відпрацюванню навику обчислення похідних та інтегралів, важливо, щоб учні свідомо оволоділи сутністю даних понять.

6. При постановці теми „Елементи геометрії Лобачевського” мається на увазі перш за все ознайомити учнів з методологічними основами побудови геометрії, дати поняття про аксіоматичний метод, проілюструвати цей метод на геометрії Лобачевского, виявити її відмінності від геометрії Евкліда. Тут же слід звернути увагу учнів на логічну структуру математичних понять, суджень та умовиводів (не означувані поняття і відношення, означувані поняття і відношення, аксіома, теорема, доведення, спростування, проблема існування математичного об’єкту).

7. Постановка елементів математичної логіки на початку навчання у 10 класі дозволить учням досить рано застосовувати логіко-математичну символіку при запису доведень теорем та розв’язань задач.

8. При введенні нової теми корисно використовувати методичний принцип: практика – теорія – практика. В силу цього принципу вивчення теми зазвичай починається з так званих „доцільних” задач практичного характеру, розв’язування яких приводить до необхідності чи принаймні доцільності вивчення відповідного розділу теорії. Цей методичний принцип можна застосовувати і в іншій формі: не за сходинками (практика – теорія – практика), а одночасно. Наприклад, при вивченні теми „Логарифми та логарифмічна функція” корисно, щоб учні вміли формулювати деякі властивості „трьома мовами” (мовою функцій, мовою логарифмів, мовою графіку):

а) логарифмічна функція f(x) = logax неперервна;

б) малій зміні числа відповідає така ж мала зміна його логарифма;

в) крива графіку – суцільна лінія;

г) властивість неперервності дає практичну можливість обмежитися при обчисленнях чотиризначними таблицями логарифмів:

lg 6,42567695 lg 6,426.

9. Корисно застосовувати у найрізноманітніших формах евристичний метод навчання. Наприклад, вивчення теми „Послідовності та прогресії” можна провести таким чином. Учням пропонується багато послідовностей, з яких треба вибрати серії особливих послідовностей (у них легко визначити наступний за останнім написаним член). Після класифікації даних послідовностей за серіями природно виникає питання про доцільність їх визначення, пошуку їх характеристичних властивостей і формул загального члена. Такий метод вивчення даної теми має сприяти досить успішному і ефективному її засвоєнню, викликаючи у учнів значний інтерес.

10. При проведенні уроків повторення слід звернути особливу увагу на систематизацію знань учнів за основними ідеями шкільного курсу математики („Вчення про число”, „Вчення про функцію”, „Обчислення площ та об’ємів” тощо). Повторення має охопити не тільки всі основні питання теорії, але й практики. Вправи, які при цьому розглядаються, повинні бути достатньо складними. Саме при повторенні доцільно розв’язувати задачі, що складають зміст конкурсних іспитів.

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38  39  40  41 


Інші реферати на тему «Математика»: