Сторінка
25
2) загальноосвітні школи мають створювати ті чи інші профілі навчання за рахунок комбінацій базових, профільних предметів і курсів за вибором. Цим самим забезпечується гнучка система профільного навчання, яка дає змогу обрати старшокласнику індивідуальну освітню програму;
3) курс математики, призначений для профілів гуманітарного напрямку, повинен сприяти, перш за все, становленню гуманітарної культури людини, формувати уявлення про математику як форму опису та метод пізнання дійсності, про роль математики для прогресу суспільства. Він повинен будуватись на основі широкого використання можливостей образного мислення учнів;
4) курс математики, призначений для профілів природничого напрямку, забезпечуючи гармонійний розвиток образного і логічного мислення, повинен особливу увагу приділяти з’ясуванню ролі математики в сферах її застосувань. Насамперед це означає, що учні повинні оволодіти простими навичками математичного моделювання. Саме такий вид діяльності має бути головним у навчанні майбутніх інженерів, техніків, технологів, конструкторів, механіків, природознавців тощо. Досягти цього можна за рахунок зваженого компромісу між строгістю і доступністю викладення матеріалу, а також його прикладною спрямованістю;
5) у школах і класах економічного напряму передбачається закріплення у учнів початкового інтересу до діяльності, пов’язаною з економікою. Для уроків математики доцільний відбір такого навчального матеріалу, який зміцнить фундамент математичної підготовки школяра, необхідної для успішного оволодіння тією чи іншою економічною професією. Наявність у шкільній математиці деяких прикладних задач, що будуть показувати, як математика може успішно працювати в економіці, сприятиме необхідній профільній орієнтації школяра, а також отриманню ним елементарної профільної грамотності;
6) навчання у профільному класі з поглибленим вивченням математики повинно давати учням глибокі математичні знання і широкий математичний розвиток на базі основного курсу математики. Головний принцип, який визначає математичну підготовку у класах цього профілю, – принцип поступового моделювання професійної діяльності математика. Окрім основної задачі (відбір, навчання та виховання молоді, що проявила до вивчення математики особливий інтерес та здібності), класи фізико-математичного профілю розв’язують задачу пошуку перспективного змісту, форм і методів навчання математиці для масової школи;
7) для реалізації вищезазначених особливостей вивчення математики у профільних класах необхідно детально розробляти методику викладання різних тем відповідно до профілю.
На закінчення хочеться відзначити, що дана тема є актуальною і корисною. Матеріал, який подано у роботі, може бути використаний вчителями математики та студентами для проведення занять з математики у профільних класах, а також для дослідження особливостей вивчення математики у профільних класах.
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
1. Александров А. Д., Вернер А. Л., Рыжик В. И. Геометрия: Для 10-11 кл.: Учеб. пособие для учащихся шк. и классов с углубл. изуч. математики. – М.: Просвещение, 1992.
2. Алфімов В., Артемов М., Пономаренко В. Навчальний план ліцею // Рідна школа. – 2000. – Травень. – С. 68-71.
3. Бабенко О. В. Прямі і площини в просторі, 9-й клас / Математика. – 2004. – № 10. – С. 21-23.
4. Бевз В., Мерзляк А., Слєпкань З. Програма з математики для загальноосвітніх навчальних закладів, 5-11 класи // Математика в школі. – 2003. – № 6. – С. 1-14.
5. Бевз Г. П. та ін. Геометрія: Підруч. для 10-11 кл. з поглибл. вивч. матем. в загальноосвіт. серед. закладах. – К.: Освіта, 2000.
6. Білицький О. Управління процесом розвитку особистості засобами варіативного компоненту змісту освіти / Директор школи. – 2002. – № 8. – С. 2-3.
7. Біляк Б., Дуда О. Профільне навчання в загальноосвітніх навчальних закладах // Директор школи, ліцею, гімназії. – 2003. – № 4. – С. 44-47.
8. Бродський Я. С., Павлов О. Л., Сліпенко А. К., Афанасьєва О. М. Проект програми з математики для 10-11 класів технічного та природничого профілів / 1 вересня. – 2000. – № 48. – С. 11-16.
9. Бродський Я., Павлов О. Про нові програми з математики / Математика. – 2000. – № 25-26. – С. 2-4.
10. Бродський Я., Павлов О., Сліпенко А., Хаметова З. Готуємо майбутніх математиків // Рідна школа. – 2000. – Травень. – С. 59-62.
11. Броневщук С. Г. Профильное обучение и единый государственный экзамен / www.minobr.sakha.ru
12. Бугайов О. І., Дейкун Д. І. Диференціація навчання учнів у загальноосвітній школі. – К.: Освіта, 1992.
13. Бурда М. І., Дубинчук О. С., Мальований Ю. І. Математика, 10-11: Навчальний посібник для шкіл (класів) гуманітарного спрямування. – К.: Освіта, 2000.
14. Бурда М. І., Жалдак М. І., Колесник Т. В., Хмара Т. М., Шкіль М. І., Ядренко М. Й. Програма поглибленого вивчення математики в 10-11 профільних класах // Математика в школі. – 2003. – № 6. – С. 19-25.
15. Бурда М., Мальований Ю. Програма з математики для класів гуманітарного напряму, 10-11 класи // Математика в школі. – 2003. – № 6. – С. 14-17.
16. Буркова Л. Дванадцятирічна освіта: реалії і перспективи // Рідна школа. – 2000. – Листопад. – С. 3-6.
17. Васильєва Р. Навчальний план у багатопрофільному ліцеї / Директор школи. – 2003. – № 10. – С. 9.
18. Василюк А., Жук О. Основна школа в системі європейської середньої освіти // Директор школи. Україна. – 2002. – № 1. – С. 50-58.
19. Войтенко Т., Соколова М., Уланов В. Разноуровневое обучение: положительные результаты и негативные последствия // Директор школи. Україна. – 2001. – № 2. – С. 15-23.
20. Диференціація та стандартизація математичної освіти в загальноосвітніх навчально-виховних закладах та вищих навчальних закладах першого та другого рівнів акредитації: Звіт про НДР (заключний) / www.home.skif.net
Інші реферати на тему «Математика»:
Визначені та невласні інтеграли
Задачі, що приводять до поняття означеного інтеграла. Формулювання теореми існування
Властивості степеневих рядів. Неперервність суми. Інтегрування і диференціювання степеневих рядів
Схеми застосування інтеграла до знаходження геометричних і фізичних величин. Обчислення площ плоских фігур в декартових і полярних координатах
Визначення та обчислення об’єму тіла за площами паралельних перерізів; об’єм тіла обертання