Сторінка
1
1.Знаходження оптимального розв’язку ЗЛП графічним методом.
Оскільки розглянута в темі 1 модель містить тільки дві змінні, задачу можна розв’язати графічно. У випадку трьох змінних графічний розв’язок стає менш наочним, а при більшому числі змвнних - взагалі неможливим. Незважаючи на це, розгляд графічного методу дасть змогу зробити висновки, що послужать основою для розробки загального методу розв’язання задач ЛП .
Перший крок при використанні графічного методу полягає в поданні області допустимих розв’язків, у якій водночас задовольняються всі обмеження моделі. Шукана область (простір) розв’язків задачі прикладу 1.1. показана на рис. 2.1. Умови невід’ємності змінних обмежують область їх допустимих значень першим квадрантом координатної площини (частина площини над віссю x1 і справа від осі x2). Інші межі простору розв’язків зображені прямими лініями, побудованими по рівняннях, що отримані заміною знака “£” знаком “=" в обмеженнях. Області, в яких відповідні обмеження виконуються як нерівності ( в нашому випадку - нерівності із знаком “<”), указуються стрілками, спрямованими вбік допустимих значень змінних. Отриманий простір розв’язків задачі про фарби - багатокутник АВСDЕF (рис. 2.1). У кожній точці, що належить внутрішній області або межам багатокутника розв’язків АВСDЕF, всі обмеження виконуються, тому розв’язки, що відповідають цим точкам, є допустимими. Серед безкінечногочисла таких точок можна знайтиточку оптимальнного розв’язку, якщо з'ясувати, в якому напрямку зростає цільова функція.
Рис. 2.1. Простір допустимих розв’язків задачі “про фарби”.
На рис. 2.2 показано, як здійснюється така операція.
Рис. 2.2. Знаходження оптимального розв’язку ЗЛП графічним методом.
На графік наносять лінію рівня цільової функції c1×x1+c2×x2=z0, де z0 - довільне значення z. Будують вектор N (c1, c2), що є нормальним до ліній рівня цільової функції й визначає напрямок оптимізації z. Лінію рівня зрушують паралельно самій собі вздовж вектора N доти, поки вона не вийде за межі області допустимих розв’язків. Остання точка цієї області й буде точкою оптимуму. Очевидно, що оптимальному розв’язку відповідає точка С- точка перетину прямих (1) і (2). Значення x1 та x2 в точці С визначаються шляхом розв’язання системи рівнянь:
Розв’язком цієї системи є x1=3 ; x2 =1 . Отриманий у цьому випадку прибуток складе: z=3x1+2x2 =3×3 +2×1 =12 (тис. г.о.)
Зазначимо, що у випадку, коли лінії рівня z мають такий самий нахил, як пряма зв’язуючого обмеження (тобто такого, що проходить через оптимальну точку), матимемо безліч оптимумів на відрізку.
2. Аналіз моделей ЗЛП на чутливість: мета і задачі.
Після одержання оптимального розв’язку задачі ЛП часто виникає потреба виявити чутливість цього розв’язку до певних змін параметрів вихідної моделі. Наприклад, в задачі про фарби може становити інтерес питання про те, як вплине на оптимальний розв’язок збільшення або зменшення попиту, зміна запасів ресурсів, а також ринкових цін на товари. При такому аналізі завжди розглядається деяка сукупність лінійних оптимізаційних моделей, що надає моделі динамічність, властиву реальним процесам. Відсутність методів, що дозволяють виявити вплив можливих змін параметрів моделі на оптимальний розв’язок, може призвести до того, що отриманий (статичний) розв’язок застаріє ще до своєї реалізації.
В рамках аналізу на чутливість розв’язку, отриманого графічним методом, розв’язуються такі три задачі:
1) аналіз на чутливість до зміни правих частин обмежень;
2) аналіз ступеня дефіцитності ресурсів;
3) аналіз розв’язку ЗЛП на чутливість до зміни коефіцієнтів цільової функції.
3. Перша задача аналізу на чутливість: аналіз на чутливість до зміни правих частин обмежень.
Дана задача дозволяє дати відповідь на питання: на скільки доцільно збільшити або скоротити запаси ресурсів?
Особливо важливо проаналізувати такі два аспекти.
1. На яку величину можна збільшити запас деякого ресурсу для поліпшення отриманого оптимального значення цільової функції?
2. На яку величину можна зменшити запас деякого ресурсу при збереженні отриманого оптимального значення цільової функції?
Оскільки величина запасу кожного з ресурсів фіксується в правих частинах обмежень, цей вид аналізу часто називають аналізом начутливістьдо правих частин(обмежень).
Перед тим , як відповісти на поставлені запитання, класифікуємо обмеження лінійної моделі на зв’язуючі (активні) та незв’язуючі (неактивні). Пряма, що відповідає зв’язуючому обмеженню, повинна проходити через оптимальну точку. На рис. 2.1 зв'язуючими є тільки обмеження (1) і (2), тобто ті, що лімітують запаси ресурсів А і В.
Якщо деяке обмеження є зв’язуючим, то ресурс, що йому відповідає, слід віднести до розрядудефіцитних ресурсів, оскільки він витрачається повністю. Ресурс, з яким асоційоване незв’язуюче обмеження, варто віднести до розряду недефіцитних ресурсів (тобто наявних у деякому надлишку). Таким чином, у ході аналізу моделі на чутливість до правих частин обмежень визначаються такі величини:
1) гранично допустиме збільшення запасу дефіцитного ресурсу, що дозволяє поліпшити знайдений раніше оптимальний розв’язок;
2) гранично допустиме зниження запасу недефіцитного ресурсу, що не змінює знайденого раніше значення цільової функції. Інформація, отримана в останньому випадку, особливо корисна в тих ситуаціях, коли надлишки недефіцитного ресурсу можуть бути використані для інших цілей.
Може виникнути питання: чи не варто проаналізувати, як вплине на оптимум збільшення обсягу ресурсів, які є в надлишку, і скорочення обсягу дефіцитних ресурсів. Відповідь на першу частину запитання є очевидною, тому що в цьому випадку ми спробували б зробити й без того надлишковий ресурс ще більш надлишковим, що ніяк не вплине на отриманий раніше розв’язок. Друга частина питання заслуговує особливої уваги, оскільки при можливих недопоставках дефіцитного ресурсу важливо знати, як це позначиться на результатах розв’язання задачі.
Звернемося знову до конкретного прикладу. В задачі «про фарби» продукти А и В (обмеження (1) і (2)) є дефіцитними ресурсами. Розглянемо спочатку ресурс А. На рис. 2.3 видно, що при збільшенні запасу цього ресурсу пряма (1) (або відрізок СD) переміщується вгору паралельно самій собі, поступово «стягуючи» у точку трикутник СD. Сторони CK і DK цього трикутника являють собою продовження прямих, що відповідають обмеженням (2) і (4). У точці К обмеження (2) і (4) стають зв'язуючими; оптимальному розв’язку при цьому відповідає точка К, а простором (допустимих) розв’язків стає багатокутник АВKЕF. У точці К обмеження (1) (для ресурсу А) стає надлишковим, оскільки будь-яке подальше зростання запасу відповідного ресурсу не вплине ні на простір розв’язків, ні на оптимальний розв’язок. Таким чином, обсяг ресурсу А не варто збільшувати зверх тієї межі, що відповідає точці, в якій обмеження (1) стає надлишковим.
Інші реферати на тему «Математика»:
Інтегрування ірраціональних виразів
Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа поверхні
Умовний екстремум. Метод множників Лагранжа. Метод найменших квадратів
Лінійні неоднорідні диференціальні рівняння з постійними коефіцієнтами та правою частиною спеціального вигляду
Лінійні однорідні диференціальні рівняння другого порядку з постійними коефіцієнтами