Сторінка
1

Умовний екстремум. Метод множників Лагранжа. Метод найменших квадратів

План

  • Умовний екстремум
  • Необхідні умови
  • Метод множників Лагранжа
  • Знаходження функції на основі експериментальних даних за методом найменших квадратів

1. Умовний екстремум

У попередніх параграфах були розглянуті максимуми і мінімуми функції в припущенні, що ті змінні, від яких функція залежить, є незалежними. В цих випадках максимуми мінімуми називаються безумовними. Але у багатьох задачах потрібно знаходити екстремуми функції, аргументи якої задовольняють деяким додатковим умовам – зв’язку. В цих випадках аргументи функції не є незалежними. Екстремуми такого типу називаються умовними. Як приклад, наведемо задачу про знаходження екстремуму функції

за умови, що її аргументи задовольняють умові зв’язку

.

У даній задачі екстремуми функції знаходять не на всій площині, а лише на прямій .

Нехай потрібно знайти максимуми і мінімуми функції

(6.89)

при

(6.90)

За наявності умови (6.90) із двох змінних і незалежною буде лише одна, наприклад , оскільки визначається із рівності (6.90) як функція . Якщо із (6.90) знайти явну залежність від і підставити її в (6.89), то одержимо функцію однієї змінної , яку потрібно дослідити на екстремум. Але розв’язання рівняння (6.90) відносно однієї із змінних може бути важким або взагалі неможливим. Тому зупинимося на особливому методі розв’язання задачі на умовний екстремум – методі невизначених множників Лагранжа.

У точках екстремуму похідна має дорівнювати нулю. Враховуючи, що є функція від , знаходимо .

Отже, в точках екстремуму

. (6.91)

Із рівності (6.90) маємо

(6.92)

Домножимо рівність (6.92) на невизначений множник і додамо її з рівністю (6.91), одержимо

.

або

(6.93)

(6.93) перетворювалася на нуль: Рівність (6.93) виконується в усіх точках екстремуму. Доберемо множник так, щоб в точках екстремуму функції друга дужка у рівності

.

Тоді в точках екстремуму виконуються три рівняння:

(6.94)

з трьома невідомими . Із системи (6.94) визначаємо і , що відіграє лише допоміжну роль і в подальшому не потрібне.

Ліві частини рівнянь (6.94) є частинними похідними функції

,

яка називається функцією Лагранжа. Система (6.94) співпадає з умовами безумовного екстремуму функції .

Із виводу рівнянь (6.94) випливає, що вони є лише необхідними умовами умовного екстремуму.

Зауваження. Описаний метод поширюється на дослідження умовного екстремуму функції будь-якого числа змінних.

Нехай потрібно знайти максимуми і мінімуми функції змінних

за умови, що змінні зв’язані рівняннями:

(6.95)

Складемо функцію Лагранжа

і прирівняємо до нуля її частинні похідні по :

(6.96)

Із рівнянь (6.95) і (6.96) знаходимо координати критичних точок і допоміжних невідомих . Системи рівнянь (6.95) і (6.96) є необхідними умовами умовного екстремуму.

Приклад. За яких розмірів прямокутний паралелепіпед має найбільший об’єм, якщо його повна поверхня має площу ?

Р о з в ’ я з о к. Нехай довжина сторін паралелепіпеда дорівнюють і . Його об’єм , а площа поверхні . Потрібно знайти найбільше значення функції за умови .

Перейти на сторінку номер:
 1  2  3 


Інші реферати на тему «Математика»: