Сторінка
1
План
- Умовний екстремум
- Необхідні умови
- Метод множників Лагранжа
- Знаходження функції на основі експериментальних даних за методом найменших квадратів
1. Умовний екстремум
У попередніх параграфах були розглянуті максимуми і мінімуми функції в припущенні, що ті змінні, від яких функція залежить, є незалежними. В цих випадках максимуми мінімуми називаються безумовними. Але у багатьох задачах потрібно знаходити екстремуми функції, аргументи якої задовольняють деяким додатковим умовам – зв’язку. В цих випадках аргументи функції не є незалежними. Екстремуми такого типу називаються умовними. Як приклад, наведемо задачу про знаходження екстремуму функції
за умови, що її аргументи задовольняють умові зв’язку
.
У даній задачі екстремуми функції знаходять не на всій площині, а лише на прямій .
Нехай потрібно знайти максимуми і мінімуми функції
(6.89)
при
(6.90)
За наявності умови (6.90) із двох змінних і незалежною буде лише одна, наприклад , оскільки визначається із рівності (6.90) як функція . Якщо із (6.90) знайти явну залежність від і підставити її в (6.89), то одержимо функцію однієї змінної , яку потрібно дослідити на екстремум. Але розв’язання рівняння (6.90) відносно однієї із змінних може бути важким або взагалі неможливим. Тому зупинимося на особливому методі розв’язання задачі на умовний екстремум – методі невизначених множників Лагранжа.
У точках екстремуму похідна має дорівнювати нулю. Враховуючи, що є функція від , знаходимо .
Отже, в точках екстремуму
. (6.91)
Із рівності (6.90) маємо
(6.92)
Домножимо рівність (6.92) на невизначений множник і додамо її з рівністю (6.91), одержимо
.
або
(6.93)
(6.93) перетворювалася на нуль: Рівність (6.93) виконується в усіх точках екстремуму. Доберемо множник так, щоб в точках екстремуму функції друга дужка у рівності
.
Тоді в точках екстремуму виконуються три рівняння:
(6.94)
з трьома невідомими . Із системи (6.94) визначаємо і , що відіграє лише допоміжну роль і в подальшому не потрібне.
Ліві частини рівнянь (6.94) є частинними похідними функції
,
яка називається функцією Лагранжа. Система (6.94) співпадає з умовами безумовного екстремуму функції .
Із виводу рівнянь (6.94) випливає, що вони є лише необхідними умовами умовного екстремуму.
Зауваження. Описаний метод поширюється на дослідження умовного екстремуму функції будь-якого числа змінних.
Нехай потрібно знайти максимуми і мінімуми функції змінних
за умови, що змінні зв’язані рівняннями:
(6.95)
Складемо функцію Лагранжа
і прирівняємо до нуля її частинні похідні по :
(6.96)
Із рівнянь (6.95) і (6.96) знаходимо координати критичних точок і допоміжних невідомих . Системи рівнянь (6.95) і (6.96) є необхідними умовами умовного екстремуму.
Приклад. За яких розмірів прямокутний паралелепіпед має найбільший об’єм, якщо його повна поверхня має площу ?
Р о з в ’ я з о к. Нехай довжина сторін паралелепіпеда дорівнюють і . Його об’єм , а площа поверхні . Потрібно знайти найбільше значення функції за умови .
Інші реферати на тему «Математика»:
Задачі, що приводять до похідної. Визначення похідної, її геометричний і механічний зміст
Задачі геометричного і фізичного характеру, що приводять до диференціальних рівнянь
Наближене обчислення означених інтегралів: формули прямокутників, трапецій, Сімпсона
Лінійна однорідна система з постійними коефіцієнтами. Застосування теорії диференціальних рівнянь в економіці
Задача Коші. Лінійні диференціальні рівняння із сталими коефіцієнтами. Загальний та частинний розв’язки