Сторінка
10
або .
Далі слід дати означення перпендикулярних площин і сформулювати ознаку, яка доводиться в систематичному курсі стереометрії. Таке пояснення необхідно також супроводжувати показом моделей. Якщо косинець прикласти до двох площин, що перетинаються так, що його катети будуть перпендикулярні до лінії їх перетину, то ми матимемо уявлення про перпендикулярні площини. Перпендикулярність площин на практиці можна перевірити за допомогою виска (шнура з тягарцем). Так, наприклад, перевіряють вертикальність стін будівлі.
Важливо, щоб учні могли показувати приклади взаємного розміщення прямих і площин у просторі на моделях відомих їм геометричних тіл, на предметах навколишнього середовища.
За дослідженнями психологів, середній шкільний вік є найбільш сензитивним для засвоєння методу проектування. Враховуючи це в практиці навчання, необхідно вже в курсі планіметрії ознайомити учнів з виконанням зображень геометричних тіл. У зв'язку з цим як спосіб зображення просторових фігур доцільно розглянути паралельне проектування, а саме конструкцію паралельного проектування точки та фігури на площину, сформулювати властивості паралельної проекції.
Під час вивчення розділу «Елементи стереометрії» відомості про многогранники, які учні одержали раніше, необхідно узагальнити й систематизувати. А саме: на основі попереднього досвіду учнів потрібно дати загальне поняття многогранника, його граней, ребер, вершин. Доцільно сформулювати таке означення.
Многогранник – це геометричне тіло, поверхня якого складається із скінченної кількості плоских многокутників.
Многокутники, які обмежують многогранник, називають його гранями, їх сторони – ребрами, а вершини – вершинами многогранника.
При цьому вчителю слід продемонструвати різні моделі многогранників. Учні повинні вміти показувати їх грані, ребра, вершини.
Корисно нагадати учням, що з найпростішими з многогранників – призмами і пірамідами – вони зустрічалися раніше і вже ознайомлені з їх елементами та деякими властивостями.
Перший вид многогранників, який слід розглянути, – призми. Відомості, одержані про призму раніше, варто пригадати, повторити. Зокрема, призму учні мають розпізнавати як многогранник, у якого дві грані – довільні рівні многокутники з відповідно паралельними сторонами, а решта граней – паралелограми. Рівні многокутники називають основами призми, а паралелограми – бічними гранями.
Демонструючи моделі різних призм, учитель має звертати увагу учнів на те, що є призми, у яких бічні грані – прямокутники. У цьому випадку бічне ребро перпендикулярне до площини основи. Можна дати означення прямої призми: призму називають прямою, якщо її бічні ребра перпендикулярні до основ. В іншому випадку призма буде похилою. У 9-му класі досить обмежитися розглядом прямої призми.
Висотою прямої призми є довжина її бічного ребра. Відрізок, який сполучає дві вершини, що не належать одній грані, називають діагоналлю призми. Уявлення про діагональний переріз можна дістати, коли розрізати призму, виготовлену з пластичного матеріалу (пластиліну, воску, гуми), площиною, що проходить через бічні ребра призми.
Серед чотирикутних призм корисно виділити ті, основою яких є паралелограм. Такі призми називають паралелепіпедами. Отже, всі грані паралелепіпеда є паралелограмами. Якщо бічні ребра паралелепіпеда перпендикулярні до площини основи, то його називають прямим паралелепіпедом (в іншому випадку він буде похилим). У прямого паралелепіпеда дві грані (основи) – паралелограми, а решта граней – прямокутники. З класу прямих паралелепіпедів виділяють такі, основою яких є прямокутник. Це прямокутний паралелепіпед. Куб – це прямокутний паралелепіпед, у якого всі ребра рівні.
Важливо, щоб учні усвідомили, що і куб, і прямокутний паралелепіпед, і прямий паралелепіпед є різновидами призми. Доречним є поданий нижче ланцюг, який демонструє зв'язок між цими поняттями: призма – чотирикутна призма – паралелепіпед – прямий паралелепіпед – прямокутний паралелепіпед – куб.
Деякі відомості про елементи прямої призми (ребра, грані, основи) учням уже відомі. На основі планіметричних знань їх доцільно уточнити. Оскільки основи та бічні грані прямої призми є плоскими фігурами, то для них справедливі твердження планіметрії, зокрема: бічні ребра рівні між собою як протилежні сторони прямокутника. Після цього, використовуючи властивості паралельного проектування, вчимо учнів будувати зображення прямої призми. Це можна зробити в такій послідовності. Спочатку зображуємо одну з основ призми (це буде деякий плоский многокутник). Потім через вершини многокутника проводимо вертикальні паралельні прямі та відкладаємо на них рівні відрізки (вони будуть зображенням бічних ребер прямої призми). Послідовно сполучаючи кінці цих відрізків, одержуємо зображення другої основи призми.
Одночасно доцільно дати учням уявлення про зображення прямокутного паралелепіпеда, куба. За відповідної підготовки переважна більшість учнів правильно виконує ці зображення, досить легко за ними знаходить паралельні, взаємно перпендикулярні грані, ребра тощо.
Наступний вид многогранників, які пропонуємо розглянути, – піраміди. Уявлення про піраміду і деякі відомості про неї учні вже мають. Тому їх слід пригадати. Зокрема, піраміду вони розпізнають як многогранник, у якого одна грань – довільний многокутник, а решта граней – трикутники, що мають спільну вершину. Такий опис дає безпосереднє уявлення про форму всіх граней піраміди. Це значно полегшує сприймання форми піраміди, а отже, й дослідження її властивостей. При узагальненні поняття піраміди має бути сформульовано її означення.
Пірамідою називають многогранник, одна з граней якого – плоский многокутник, а решта граней – трикутники, що мають спільну вершину. Потрібно пригадати види пірамід залежно від многокутника, що є основою піраміди, показати їх на моделях та зображеннях.
Оскільки учні вже мають уявлення про перпендикулярність прямої та площини, то можна ввести поняття висоти піраміди як перпендикуляра, опущеного з вершини піраміди на площину основи. Точку перетину перпендикуляра та площини основи називають основою висоти піраміди. Висота утворює прямий кут з будь-якою прямою, що лежить у площині основи піраміди та проходить через основу висоти. Це твердження широко використовується під час розв'язування задач на обчислення елементів піраміди.
Зображати піраміду вчимо учнів у такій послідовності. Будуємо зображення основи піраміди у вигляді плоского многокутника. Позначаємо вершину піраміди і сполучаємо її відрізками з вершинами основи (ці відрізки будуть зображенням бічних ребер піраміди).
Під час побудови зображень призми, піраміди радимо використовувати відповідні демонстраційні комп'ютерні програми.
Варто на наочному рівні дати уявлення про діагональний переріз піраміди аналогічно до того, як це було зроблено у випадку призми.
Якщо піраміду перетнути площиною, паралельною площині основи, то одержимо два многогранники, один з них – піраміда, інший – зрізана піраміда. Слід наголосити, що зрізана піраміда – окремий вид многогранників.