Сторінка
8
У тексті виділено основний зміст (означення, теореми й наслідки з них), доповнення та приклади розв'язування задач. До кожної теореми подано її назву. Наприкінці розділу міститься підсумковий огляд його змісту у вигляді таблиці, які наочно ілюструють змістовно-логічні та структурно-функціональні зв'язки між елементами навчального матеріалу.
Крім того, наприкінці розділу пропонуються контрольні запитання і типові задачі для підготовки до контрольної роботи. Наявність цих матеріалів дає змогу учневі самостійно оцінити рівень своєї математичної підготовки; запитання і задачі мають діагностичну цінність і сприяють корекції знань. Додаткові задачі до розділу призначені для організації інтегрованого повторення і узагальнення вивченої теми, встановлення внутрішніх взаємозв'язків між окремими фрагментами теми. Окремо після розділу виділено задачі підвищеної складності. Така організація матеріалу дає змогу забезпечити опанування учнем програмового змісту як під керівництвом учителя, так і самостійно.
Теоретичний матеріал побудовано за схемою «означення основних понять – аксіоми й теореми – наслідки – приклади застосування». Окреме місце відводиться опорним задачам, які містять додаткові теоретичні відомості, на які учні далі можуть посилатися без доведення. Такі задачі подаються як в основному тексті параграфів, так і в задачному матеріалі. Задачі до кожного параграфа розподілено на чотири групи. Першу групу складають усні вправи – завдання теоретичного плану, розгляд яких є проміжним етапом між вивченням теорії і розв'язуванням письмових задач. Наявність таких задач дає змогу використовувати на уроці інтерактивні форми роботи. Друга група завдань – графічні вправи, які учні можуть виконувати як власноруч у зошиті, так і за допомогою комп'ютера. Ці вправи дають наочне уявлення про базові геометричні конфігурації, що вивчаються, сприяють розвитку початкових креслярських умінь і навичок роботи з графічними комп'ютерними програмами. Наступну групу складають письмові задачі, згруповані за трьома рівнями складності. Зазначимо, що на кожному рівні завдання диференційовано за змістом навчальної діяльності – задачі на обчислення, доведення, побудову тощо. Нарешті, наприкінці кожного параграфа виділено теоретичний матеріал, який необхідно повторити для свідомого засвоєння наступної теми, і подано задачі для повторення.
Розв'язувати всі задачі розділу не обов'язково (а з урахуванням наявного навчального часу і неможливо). Задачі до кожної теми свідомо подано в надлишковій кількості, щоб розширити творчі можливості вчителя, сприяти організації особистісно-орієнтованого навчання, диференціації роботи учнів у класі та вдома з урахуванням їхніх індивідуальних можливостей і рівня математичної підготовки.
До теми «Взаємне розташування прямих у просторі» у трьох підручниках докладно подано основні фігури в просторі, позначення і зображення площин, розміщення точок у просторі. У підучниках Мерзляка і Єршова чітко виділені твердження, як однозначно задати площину. Також тут подані графічні зображення взаємного розміщення двох прямих у просторі, у підручнику Бурди лише продемонстровано на прикладі кімнати.
До теми «Взаємне розміщення прямих і площин у просторі» у підручнику Бурди всі випадки взаємного розміщення прямої і площини, двох площин наведені в таблиці, графічних зображень немає.
При вивченні в 9 класі даного розділу значну увагу слід приділити формуванню в учнів культури графічного зображення просторових тіл та їх елементів. До даних тем у трьох підручниках вдало підібрані усні та графічні вправи, у підручниках Мерзляка, Бурди значна увага приділена задачам практичного змісту, більшість задач супроводжуються допоміжними малюнками. Таким чином, вивчаючи перші теми стереометрії учні відзначають, що в просторі взаємне розташування фігур є більш різноманітним, ніж у площині.
Наступні теми передбачають вивчення основних тіл стереометрії, вони закладають формування переходу від мислення в категоріях плоских фігур до мислення в просторі, також усвідомлення того, що для визначення взаємного розташування фігур у просторі слід правильно виокремити ті елементи, які визначають це взаємне розташування.
Так, до теми «Поняття многогранника. Призма.» у даних підручниках сформульоване поняття геометричного тіла, многогранника та його елементів, наведені наочні та графічні зображення призм. Дев’ятикласники вже мають запас просторових уявлень, тому при вивченні даних тем вони доповнюються і систематизуються.
У підручниках Мерзляка і Єршова подається доведення теорем про площу бічної поверхні прямої призми.
У підручнику Бурди вивчення піраміди і призми подано одночасно, властивості розглядаються без доведень, проте вони мають достатньо переконливе наочне підтвердження. Так, вивчення властивостей фігур у просторі спирається на приклади з довкілля, макети, малюнки або досліди. Щоб учні до формул об’ємів призми (піраміди) розглядаються досліди з пересипанням піску.
Циліндр, конус, куля подаються в усіх підручниках як тіла обертання. Бічні поверхні циліндра і конуса розглядаються через розгортки відповідно циліндра і конуса.
На мою думку, те, що у підручнику Бурди призма і піраміда подаються разом є своєрідним недоліком. Також сюди можна віднести той факт, що ми бачимо перенасичення задачами. Слід зазначити, що не всі задачі однаковою мірою сприяють цілеспрямованому розвитку даного процесу. Саме тому доцільно використовувати систему вправ і задач, яку будують так, щоб учень самостійно застосовував свої знання, вміння, уявлення, щоб у нього вироблялася звичка переносити знання у нові ситуації. Розв’язуючи задачі учні повинні усвідомлювати ті дії, які вони при цьому виконують. Аналіз дій дає їм змогу підходити до пошуків алгоритмів розв’язання задач певного виду, а потім і до алгоритмізації більш складних видів навчальної діяльності.
У школі вчителі протягом вивчення стереометрії приділяють увагу в основному опрацюванню теорії та розв’язуванню абстрактних задач, оскільки вони недооцінюють можливості реалізації прикладної спрямованості для досягнення цілей вивчення цього курсу. Посилюють цю ситуацію такі фактори: невелика кількість годин, що відведена для вивчення курсу стереометрії; у методичній літературі мало матеріалів, які доводять значущість прикладної спрямованості та конкретних методичних розробок, що допомагають вчителю ефективно використовувати її засоби тощо. З огляду на перераховані обставини, у вчителів відсутня мотивація для систематичного прикладного спрямування курсу, зокрема для розв’язування з учнями прикладних задач, особливо враховуючи їх невелику кількість у підручниках, посібниках та майже повну відсутність серед добірок завдань контролюючого характеру.
Загальні методичні рекомендації вивчення елементів стереометрії у курсі геометрії 9 класу
Формування уявлень і понять про стереометричні фігури та деякі їх властивості
Формування понять – складний психологічний процес, який починається з утворення найпростіших форм пізнання – відчуття. Він проходить часто за такою схемою: відчуття сприймання уявлення поняття.