Сторінка
7
1. Знайдіть площу поверхні прямокутного паралелепіпеда, у якого діагональ дорівнює 13 дм, висота 12 дм, а одне з ребер основи 4 дм.
2. Основою прямої призми є трикутник, у якого сторони довжиною 5 см і 6 см утворюють кут 30°. Бічне ребро призми дорівнює 4 см. Знайдіть об'єм призми.
3. У прямій призмі основа – прямокутний трикутник з катетами 6 см і 8 см. Бічне ребро призми дорівнює 12 см. Знайдіть площу повної поверхні призми.
4. Знайдіть площу поверхні піраміди, основою якої є квадрат. Кожне ребро піраміди дорівнює 3 дм.
5. Сторони прямокутника дорівнюють 4 см і 5 см. Знайдіть площу повної поверхні тіла, утвореного обертанням цього прямокутника навколо меншої сторони.
6. Осьовий переріз циліндра – прямокутник зі сторонами 12 см і 26 см. Знайдіть об'єм циліндра, якщо його висота дорівнює меншій стороні осьового перерізу.
7. Твірна та радіус основи конуса дорівнюють відповідно 5 м і 2 м. Знайдіть площу поверхні конуса.
8. Покрівля силосної башти має форму конуса. Висота покрівлі 2 м, діаметр башти 6 м. Знайдіть площу поверхні покрівлі.
Аналіз змісту і методів вивчення елементів стереометрії у курсі геометрії 9 класу за новими підручниками з геометрії
У зв'язку з введенням у школах нових навчальних планів і програм з математики постала гостра потреба у підручниках, які б відповідали вимогам нових програм.
Навчання математики у 9 класах загальноосвітніх навчальних закладів здійснюється за новими підручниками: «Геометрія. 9 клас» (автори А.Г. Мерзляк, В.Б. Полонський, М.С. Якір) видавництва «Гімназія», «Геометрія. 9 клас» (автори Бурда М.І., Тарасенкова Н.А.) видавництва «Зодіак – ЕКО», «Геометрія. 9 клас» (автори А.П. Єршова, В.В. Голобородько, О.Ф. Крижановський, С.В. Єршова) видавництва «Ранок».
Ці підручники створено відповідно до Державного стандарту та нових програм з алгебри та геометрії для 9 класу загальноосвітніх навчальних закладів. Однією з основних проблем шкільних підручників геометрії – оптимальне поєднання науковості й доступності викладення матеріалу. Складністю вирішення цієї проблеми пояснюється те, що українські школи мають обмаль підручників, за якими справді хотілося б навчати учнів. Та з іншого боку, це дало поштовх до педагогічної творчості чималій кількості небайдужих вчителів.
Розглянемо, як висвітлений розділ «Початкові відомості зі стереометрії» у цих підручниках.
У підручнику «Геометрія, 9» М.І. Бурди, Н.А. Тарасенкової розділ розпочинається переліком передбачуваних пізнавальних результатів («У розділі дізнаєтесь…»), а завершується рубрикою «Перевірте, як засвоїли матеріал розділу». Тут подано контрольні запитання узагальнюючого характеру і тестові завдання. У кожному параграфі є: основний навчальний матеріал; додаткові відомості (рубрика «Дізнайтеся більше»); запитання для повторення вивченого (рубрика «Згадайте головне»); система задач, диференційована за складністю (рубрика «Розв'яжіть задачі»), яку завершує окремий блок завдань «Застосуйте на практиці».
Науковість змісту розділу забезпечена в першу чергу логічно послідовним розміщенням навчального матеріалу, коректним формулюванням означень понять, достатнім рівнем строгості. Логічне упорядкування і послідовність навчального матеріалу розділу відповідають вимогам дидактики і математики як науки. Термінологія сучасна, предметна й однозначна. Поняття і властивості геометричних фігур сформульовані коректною математичною мовою. Чітко розмежовується зміст понять (перераховуються всі суттєві ознаки) і їх обсяг (вказується множина об'єктів, де застосовується поняття). При цьому зміст понять розкривається за допомогою означень, а їх обсяг – із залученням класифікацій (поділу понять за певною ознакою). З одного боку, це покращить засвоєння і застосування понятійного апарату даної теми, а з другого – посилить його зорове сприймання. Заслуговує на увагу і те, що поряд з означеннями понять через найближчий рід і видову відмінність, сприймання яких вимагає складнішої розумової діяльності, використовуються і конструктивні означення, які дають змогу учневі усвідомити сам процес створення (побудови) відповідного стереометричного об’єкта. Тому означення поняття нерідко спирається або на малюнок, або побудову відповідної геометричної фігури, або на розгляд життєвої ситуації. Учням пропонується спочатку самостійно дати означення поняттю, а потім порівняти його з наведеним у підручнику.
Вивчення геометричних фактів, як правило, розпочинається з аналізу учнем емпіричного досвіду (відповідних прикладів із довкілля, моделей чи малюнків), або з опису практичних дій. Це дає змогу проводити невеликі дослідження, з'ясовувати суттєві ознаки понять, властивості геометричних фігур і на основі цього самостійно формулювати відповідні твердження. Самостійно оволодіти навчальним матеріалом допоможе і підкріплення його малюнками, які виконують не лише ілюстративну, а й евристичну роль – на малюнках кольором виділено дані і шукані величини, допоміжні побудови тощо. Кольорові фотографії та ілюстрації також несуть ретельно продумане дидактичне навантаження.
Задачі підручника мають чотири рівні складності – початковий, середній, достатній і високий. Усередині набору кожного рівня складності задачі згруповані за порядком вивчення теоретичних відомостей. Як правило, набори початкового і середнього рівнів складності розпочинаються із задач за готовими малюнками. Хоча вони не є винятком і серед більш складних задач. Окремі найбільш важливі задачі-теореми виділені чорним шрифтом. Учням доцільно запам’ятати їх формулювання. Ці геометричні твердження можна застосовувати у розв'язуванні інших задач. Особливістю задач є те, що задачі високого рівня складності включають елементи задач середнього і достатнього рівнів, а останній – елементи задач початкового рівня.
Особливістю розділу є прикладна спрямованість змісту. Автори намагалися, де це можливо, не лише показати виникнення геометричного факту із практичної ситуації, а й проілюструвати застосування його на практиці. З цією метою в окремо виділеному блоці завдань «Застосуйте на практиці» подано типові практичні ситуації, де потрібно застосувати вивчений матеріал.
У підручнику «Геометрія, 9» А.П.Єршової, В.В. Голобородько, О.Ф. Крижановського, С.В.Єршова зазначено, що цей розділ «своєрідний стислий огляд курсу геометрії 10–12 класів». Тема «Початкові відомості зі стереометрії» передбачає ознайомлення учнів з фігурами в просторі і є пропедевтичним вступом до курсу стереометрії, що вивчатиметься у старших класах. Разом із цим, у порівнянні з попередніми підручниками, з'являються нові дидактичні акценти, пов'язані зі специфікою «геометрії методів», розширюються і поглиблюються окремі питання щодо властивостей геометричних фігур, методики розв'язування задач тощо.
Структура, обсяг і співвідносність розділів навчального матеріалу повністю відповідають діючій програмі. Однак порівняно з традиційними підходами до розгляду відповідного навчального матеріалу запропоновано декілька важливих інновацій. Це дає можливість спростити низку доведень. Найбільш складні з точки зору обґрунтування теореми супроводжуються в основному тексті зрозумілими для пересічного учня загальними схемами міркувань, а відповідні строгі доведення подаються в «Додатках».