Сторінка
16
7. Обчислення об’ємів і площ поверхні тіл обертання.
У програмі передбачено обчислення обсягів і площ поверхонь тіл обертання, що утворюють яких обертаються навколо осі Оx або Oy в прямокутній декартовій системі координат і задаються одним з трьох способів:
1. у вигляді явної залежності між змінними x і y: y = f (x);
2. у вигляді заданої параметрично залежності між змінними x і y: x = f (t), y = g (t), де t – мінлива-параметр;
3. у вигляді ламаної, заданої впорядкованим набором вершин у площині xOy.
Відразу після створення об'єкта типу Поверхня обертання розпочнеться обчислення об'єму та площі поверхні тіла, обмеженого поверхнею, утвореної обертанням графіка заданої функції або ламаного. Цей процес вимагає певного часу, тому під час обчислення з'являється вікно з показником стану виконання обчислень.
Після обчислення результат буде виведено у полі характеристик поточного об'єкта. У програмі передбачено обчислення обсягів і площ поверхонь тіл обертання, що утворюють яких обертаються навколо осі Оx або Oy в прямокутній декартовій системі координат і задаються одним з трьох способів:
1. у вигляді явної залежності між змінними x і y: y = f (x);
2. у вигляді заданої параметрично залежності між змінними x і y: x = f (t), y = g (t), де t – мінлива-параметр;
3. у вигляді ламаної, заданої впорядкованим набором вершин у площині xOy.
Відразу після створення об'єкта типу Поверхня обертання розпочнеться обчислення об'єму та площі поверхні тіла, обмеженого поверхнею, утвореної обертанням графіка заданої функції або ламаного. Цей процес вимагає певного часу, тому під час обчислення з'являється вікно з показником стану виконання обчислень.
Після обчислення результат буде виведено у полі характеристик поточного об'єкта.
8. Обчислення значення вираження.
Під час роботи з програмою іноді виникає необхідність обчислити значення деякого вираження. У таких випадках зручно скористатися послугою Обчислення \ Значення виразу. На вкладці Значення виразу вікна Обчислення, яке з'явиться після звернення до зазначеної послуги, в полі Вираз потрібно ввести вираз, значення якого необхідно обчислити, і «натиснути» кнопку Обчислити, після чого результат буде виведено у полі Результат обчислень. При цьому якщо вираз було введено некоректно, то з'явиться повідомлення про помилку.
Для введення виразів можна використовувати панель калькулятора з цифровими кнопками і кнопками швидкого введення назв стандартних функцій, що дозволяє вводити вирази за допомогою лише миші, без використання клавіатури. Без використання панелі калькулятора всі необхідні символи можна ввести також і з клавіатури.
Покажемо застосування цієї програми.
Головною функціональною можливістю програми, яка заявлена розробниками, є перевірка вірності розв’язання геометричних задач. Користувач (учень) має змогу після вирішення поставленої задачі перевірити результат, використавши програму Gran 3D.
Розглянемо можливості програмного продукту на прикладі задач, поданих в шкільному підручнику. Спочатку проводиться вирішення задачі стандартним способом – за допомогою формул та математичних обчислень, після чого знайдені результати перевіряються на правильність.
Задача 1.
Діаметр кулі дорівнює 10 см. Знайти відношення площі поверхні цієї кулі до її об’єму.
Розв'язання стандартним способом:
Перевірка:
Викликаємо команду «Створити базовий просторовий об'єкт». У вікні, що появилось, вибираємо вкладку «Куля» (рис. 29).
Рис. 29
Вводимо діаметр кулі і натискаємо на кнопку «Створити». Програма будує тримірне зображення кулі, що дозволяє користувачу наглядно оцінити параметри кулі, аналіз якої він проводить (рис. 30).
Рис. 30
У вкладеному вікні, що знаходиться з правої сторони, зчитуємо інформацію про об’єкт та площу поверхні (рис. 31).
Рис. 31
Обєм: 523 куб. од.
Площа поверхні: 307 кв. од.
Діленням об’єму на площу можна отримати відношення 3 до 5, що є правильним розв’язком задачі.
Задача 2.
Кульку виготовили із скла, її радіус 3 см. Знайти з точністю до десятих грама масу цієї кульки, якщо маса 1 см3 дорівнює 3 г.
Стандартний метод розвязку:
Тоді маса кульки:
3*113,04=339,1 (г)
Перевірка результату. Викликаємо команду побудови базового просторового об’єкту, у вікні вибираємо вкладку «Куля» і вводимо початкові дані (рис. 32).
Рис. 32
Створюємо кулю з вказаними параметрами і у вікні з інформацією про об’єкту отримуємо дані про об’єм кулі (рис. 33) і перемножуємо на густину скла. В результаті отримуємо співпадання даних, добутих двома способами.
Рис. 33
Задача 3. Прямокутний трикутник, катети якого дорівнюють 36 см. І 10,5 см, обертається навколо одного катета. Визначити повну поверхню і об’єм утвореного при цьому конуса.
Розв'язання:
Де R – радіус основи, L – твірна, H – висота.
Розглянемо , у ньому .
Якщо ОА=10,5см, SO=36см, то за теоремою Піфагора SA2=SO2+OA2=1296+110,25=1406,25, SO=37,5см.
Отже,
Якщо ОА=36см, SO=10,5, то за теоремою Піфагора
SA2=SO2+OA2=1296+110,25=1406,25, SO=37,5см.
Отже,
Перевіримо відповідь за допомогою програми Gran 3D. Для цього викличемо команду «Створити просторовий базовий об'єкт», перейдемо на вкладку «Конус» і введемо дані, вказані в умові задачі (рис. 34).
Рис. 34
У вікні параметрів об’єкту читаємо дані про об’єм та повну поверхню утвореного конуса (рис. 35).
Рис. 35
Ділимо отримані дані на Пі і отримуємо результат, відповідний до результату, отриманого стандартним способом розв’язування.
При цьому, разом з перевіркою даних на основі програма будує стереометричну модель об’єкта, що дає можливість побачити його візуально, виконати операції масштабування та обертання для його кращого аналізу (рис. 36).
Рис. 36
Отже, програма дозволяє будувати різноманітні просторові об’єкти за допомогою можливостей програми Gran 3D та отримувати дані, необхідні для перевірки даних. Це дає користувачу змогу перевіряти вірність отриманих в процесі розв’язання даних та ефективно аналізувати візуальний вигляд об’єкту.
Інші реферати на тему «Педагогіка, виховання»:
Формування комунікативної компетенції у дітей
Перевірка і оцінювання результатів навчання інформатики
Підвищення ролі загальнотехнічної підготовки в спільній системі професійно-технічної освіти
Психолого-педагогічне застосування ігрових технологій у загальноосвітньому навчальному закладі
Методи навчання у дніпропетровському театрально-художньому коледжі