Сторінка
2
Рис.12.1
Приклад 2 . Нехай відомо, що швидкість хімічної реакції, яка перетворює речовину на речовину , пропорційна добуткові концентрації цих речовин.
Потрібно скласти диференціальне рівняння залежності об’єму речовини від часу .
Нехай об’єм речовини , що бере участь в реакції, дорівнює . Тоді загальний об’єм . Приріст у разі переходу речовини в речовину має вигляд: , а швидкість реакції буде . Згідно з умовою
(12.10)
(коефіцієнт пропорційності), оскільки та - концентрації речовин та Враховуючи, що рівняння (12.10) запишемо у вигляді
або
(12.11)
де .
Цікаво відзначити, що рівняння (12.11) збігалося з рівнянням (12.5). Вперше таке рівняння використано у 1845 р. і названо як рівняння Ферхольста - Перла, застосовувалось воно для опису динаміки чисельності популяції в біології. Зауважимо, що такий самий вигляд мають рівняння інших процесів – наприклад, попиту на сезонні масові послуги на підприємствах побутового обслуговування, а також випаровування вологи з пористої речовини тощо.
Розглянемо диференціальне рівняння виду . Виявляється, що це рівняння також описує зовсім різні явища, процеси: при отримуємо закон органічного росту, при - рівняння процесу радіоактивного розпаду, залежності атмосферного тиску від висоти, процесу розряду конденсатора через опір й ін.
12.3. Однорідні диференціальні рівняння першого порядку і рівняння, що зводяться до однорідних
Рівняння першого порядку
називається однорідним відносно та , якщо для будь-якого справедлива тотожність
.
Приклад 1. Рівняння є однорідним, бо
.
Однорідні диференціальні рівняння першого порядку зводяться до рівнянь з відокремлюваними змінними за допомогою підстановки Тоді (тут покладено ). Змінні відокремлюються, оскільки після підстановки в рівняння дістанемо
,
звідки
.
Інтегруючи це рівняння й повертаючись від змінної до змінної , отримуємо загальний розв’язок однорідного рівняння.
Прикладі 2. Розв’язати рівняння .
Р о з в ‘ я з о к. Це рівняння однорідне. Виконаємо у цьому рівнянні заміну залежної змінної Тоді
.
Відокремлюючи змінні, одержуємо: , звідки
.
Отже, загальний розв’язок рівняння має вигляд .
Приклад 3. Покажемо, як розв’язується рівняння, наведене в прикладі 3, за допомогою полярних координат.
Перейдемо до нових змінних та за формулами
.
Звідси
Отже,
.
Права частина рівняння у нових координатах набуває вигляду
Прирівнюючи праву і ліву частини рівняння, дістанемо
.
На основі властивості пропорції позбудемося дробів:
Спрощуючи це рівняння, отримаємо
.
Відокремлюємо змінні
.
Інтегруємо
.
(довільну сталу позначили як ) . Звідси .
Повернемось до старих змінних та й спростимо вираз. Отримаємо шуканий загальний інтеграл
Інші реферати на тему «Математика»:
Лінійні однорідні диференціальні рівняння другого порядку з постійними коефіцієнтами
Визначення та обчислення довжини дуги плоскої кривої в декартових та полярних координатах. Площа поверхні
Інтегрування раціональних функцій
Неперервність функції в точці і в області.Дії над неперервними функціями
Умовний екстремум. Метод множників Лагранжа. Метод найменших квадратів