Сторінка
5
Припустимо, що це рівняння визначає єдину і при цьому диференційовану функцію аргументу . Для цього повинні виконуватись певні умови, доведення яких опускається.
Теорема. (теорема існування неявної функції). Нехай:
1) функція означена і неперервна разом із своїми частинними похідними та в деякому околі точки ;
2) в точці дорівнює нулю:
;
3) в точці відмінна від нуля: .
Тоді
1) в деякому прямокутнику
рівняння визначає як однозначну функцію від : ;
2) при ця функція набуває значення :
;
3) на інтервалі функція неперервна і має неперервну похідну.
Знайдемо цю похідну. Оскільки у вказаному інтервалі , то для будь-якої її точки або, що те саме, , де .
Обчислюючи повну похідну, маємо
,
звідки
. (6.61)
Приклад. Знайти похідну функції .
Р о з в ’ я з о к.
.
Нехай задано рівняння
(6.62)
і при цьому виконуються умови, аналогічні умовам 1) - 3). Можна
довести, що рівняння (6.62) визначає в деякому околі точки площини єдину і питому диференційовану функцію , яка набуває значення при , .
Частинні похідні такої функції обчислюються за формулами:
; . (6.63)
Розглянемо деякі застосування теорії неявних функцій. Нехай плоска крива задана рівнянням в точці записується у вигляді
. (6.64)
Рівняння нормалі до кривої в точці записується у вигляді
. (6.65)
Нехай поверхня задана рівнянням . Візьмемо в ній точку .
Рівняння дотичної площини до поверхні в точці записується у вигляді
(6.66)
Рівняння нормалі до тієї самої поверхні в точці має вигляд
. (6.67)
Приклади.
1. Знайти рівняння дотичної і нормалі до еліпса в точці .
Р о з в ’ я з о к. Тут ; ; функції, неперервні скрізь.
Оскільки , крива має в цій точці дотичну і нормаль. Їх рівняння:
дотичної ;
нормалі .
2. Знайти рівняння дотичної площини і нормалі до поверхні в точці .
Р о з в ’ я з о к. Тут ; ;
Інші реферати на тему «Математика»:
Комплексні числа, їх зображення на площині. Алгебраїчна, тригонометрична і показникова форми комплексного числа
Числові ряди. Збіжність і розбіжність. Сума ряду. Дії над збіжними рядами
Похідні і диференціали вищих порядків. Функції, задані параметрично, їх диференціювання
Визначені та невласні інтеграли
Функціональний ряд, область його збіжності. Cтепеневі ряди. Теорема Абеля