Сторінка
1
Загальна теорія
Співвідношення вигляду
називається системою -звичайних диференціальних рівнянь першого порядку.
Якщо система розв’язана відносно похідних і має вигляд
то вона називається системою в нормальній формі.
Визначення 1. Розв’язком системи диференціальних рівнянь називається набір неперервно диференційованих функцій тотожно задовольняючих кожному з рівнянь системи.
У загальному випадку розв’язок системи залежить від - довільних сталих і має вигляд і задача Коші для системи звичайних диференціальних рівнянь першого порядку ставиться в такий спосіб. Потрібно знайти розв’язок, що задовольняє початковим умовам (умовам Коші): .
Визначення 2. Розв’язокназивається загальним, якщо за рахунок вибору сталих можна розв’язати довільну задачу Коші.
Для систем звичайних диференціальних рівнянь досить важливим є поняття інтеграла системи. В залежності від гладкості (тобто диференційованості) можна розглядати два визначення інтеграла.
Визначення 3. 1. Функція стала уздовж розв’язків системи, називається інтегралом системи.
2. Функція повна похідна, якої в силу системи тотожно дорівнює нулю, називається інтегралом системи.
Для лінійних рівнянь існує поняття лінійної залежності і незалежності розв’язків. Для нелінійних рівнянь (систем рівнянь) аналогічним поняттям є функціональна незалежність.
Визначення 4. Інтеграли, , , … , називаються функціонально незалежними, якщо не існує функції - змінних такої, що
Теорема. Для того щоб інтеграли
,,…системи звичайних диференціальних рівнянь були функціонально незалежними, необхідно і достатньо, щоб визначник Якобі був відмінний від тотожного нуля, тобто
Визначення 5. Якщо інтеграл системи диференціальних рівнянь, то рівність називається першим інтегралом.
Визначення 6. Сукупність - функціонально незалежних інтегралів називається загальним інтегралом системи диференціальних рівнянь.
Власне кажучи загальний інтеграл - це загальний розв’язок системи диференціальних рівнянь у неявному вигляді.
Теорема. (існування та єдиності розв’язку задачі Коші). Щоб система диференціальних рівнянь, розв’язаних відносно похідної, мала єдиний розв’язок, що задовольняє умовам Коші: досить, щоб:
1) функції були неперервними по змінним в околі точки ;
2) функціїзадовольняли умові Ліпшиця по аргументах у тому ж околі.
Зауваження. Умова Ліпшиця можна замінити більш грубою, але умовою, що перевіряється легше, існування обмежених частинних похідних, тобто
1. Геометрична інтерпретація розв’язків
Назвемо -вимірний простір змінних розширеним фазовим простором . Тоді розв’язок визначає в просторі деяку криву, що називається інтегральною кривою. Загальний розв’язок (чи загальний інтеграл) визначає сім’ю інтегральних кривих, що всюди щільно заповнюють деяку область (область існування та єдиності розв’язків). Задача Коші ставиться як виділення із сім’ї інтегральних кривих, окремої кривої, що проходить через задану початкову точку
Інші реферати на тему «Математика»:
Графічний метод розв’язання задачі лінійного програмування. Основи аналізу моделі на чутливість
Інтегрування правильних дробів, раціональних дробів, ірраціональостей
Невласні інтеграли з безмежними границями та з необмеженою підінтегральною функцією
Неперервність функції в точці і в області.Дії над неперервними функціями
Діаграма Вороного