Сторінка
6
Перший критерій продуктивності. Матриця продуктивна тоді і тільки тоді, коли матриця існує і її елементи невід’ємні.
Другий критерій продуктивності. Матриця з невід’ємними елементами продуктивна, якщо сума елементів за довільним її стовпцем (рядком) не перевищує одиниці:
(4.40)
причому хоча б для одного стовпця (рядка) ця сума строго менша одиниці.
Приклад. 1. Дані балансу трьох галузей промисловості за деякий період записані в табл.1. Потрібно знайти об’єм валового випуску продукції, якщо кінцеве споживання за галузями збільшити відповідно до 60, 70 і 30.
Таблиця 1
№ п/п |
Галузь |
Споживання |
Кінце-вий продукт |
Вало-вий випуск | ||
1 |
2 |
3 | ||||
1 2 3 |
Добування і переробка вуглеводів Енергетика Машинобуду-вання |
5 10 20 |
35 10 10 |
20 20 10 |
40 60 10 |
100 100 50 |
Р о з в ‘я з о к. Випишемо вектори валового випуску і кінцевого споживання та матрицю коефіцієнтів прямих затрат. Згідно формул (4.36) і (4.38),
Матриця задовольняє обидва критерії продуктивності. У випадку заданого збільшення кінцевого споживання новий вектор кінцевого продукту буде мати вигляд .
Потрібно знайти новий вектор валового випуску , що задовольняє співвідношенням балансу в припущенні, що матриця не зміниться. В такому випадку компоненти невідомого вектора знаходяться із системи рівнянь, яка в матричній формі має вигляд (4.37) або де матриця має вигляд
Звідси розраховується новий вектор як розв’язок рівняння
Знайдемо обернену матрицю (матрицю повних затрат ) (обчислення проводимо з точністю до третього знаку):
.
Зауважимо, що знайдена обернена матриця задовольняє першому критерію продуктивності матриці
Тепер вичислюємо вектор валового випуску
Таким чином, для того щоби забезпечити задане збільшення компонент вектора кінцевого продукту, необхідно збільшити відповідні валові випуски: добування і переробку вуглеводів на 52,2%, рівень енергетики – на 35,8% і випуск машинобудування – на 85% в порівнянні з початковими величинами, що приведені в табл.1.
4.5.2. Лінійна модель торгівлі
Процес взаємних закупок товарів аналізується з
використанням понять власного числа і власного вектора матриці. Припустимо, що бюджети країн витрачаються на покупку товарів. Розглянемо лінійну модель обміну, або модель міжнародної торгівлі.
Нехай доля бюджету яку а країна витрачає на закупку товарів у ої країни. Введемо матрицю коефіцієнтів
. (4.41)