Сторінка
2
1 Постійний множник можна виносити за знак визначеного інтеграла, тобто якщо А — стала, то
2 Визначений інтеграл від алгебраїчної суми скінченної кількості функцій дорівнює такій самій алгебраїчній сумі інтегралів від кожного доданку, тобто
3 Якщо поміняти місцями межи інтегрування, то визначений інтеграл змінює свій знак на протилежний, тобто
4 Визначений інтеграл з рівними межами дорівнює нулю, тобто
для будь-якої функції f (х).
5 Якщо f (х) (х), х [а, b], то
6 Якщо m та M — найбільше та найменше значення функції f (х) на відрізку [a,b], то
7 де
8
1.4. Обчислення визначених інтегралів
Раніше ми навчились знаходити невизначені інтеграли. Тому для обчислення визначених інтегралів доцільно встановити зв'язок між ними.
2.1. Зв'язок між визначеним та невизначеним інтегралами
Означення 2. Визначений інтеграл з постійною нижньою межею та змінною верхньою межею називають інтегралом із змінною верхньою межею.
Щоб мати звичне позначення, змінну верхню межу позначимо через х, а змінну інтегрування — t. Одержимо інтеграл
який є функцієюх, тобто Ф(х) =
Теорема 2. Якщо f (х) неперервна функція, то похідна визначеного інтеграла від неперервної функції по змінній верхній межі дорівнює значенню підінтегральної функції для цієї верхньої межі, тобто
(5)
Доведення. Надамо аргументу х приріст Δх, тоді функція Ф(х) одержить приріст, який згідно з властивістю 8 визначеного інтеграла можна записати у вигляді
До останнього інтеграла застосуємо властивість 7, тоді
де
Згідно з означенням похідної маємо
що й треба було довести.
Теорема 3. Визначений інтеграл від неперервної функції дорівнює різниці значень будь-якої її первісної для верхньої та нижньої меж інтегрування, тобто якщо F(x) є первісна функції f (х), то має місце рівність ь
(6)
яка називається формулою Ньютона-Лейбніца.
Доведення. Нехай F(x) деяка первісна функції f (х). За теоремою 2 також первісна для f (х). Але дві первісні функції f (х) відрізняються лише на постійний доданок С. Тому
(7)
Ця рівність (7) при відповідному обранні С буде тотожністю, тобто має місце для усіх х.
Для визначення С візьмемо у формулі (7) х = а. Тоді
Отже,
Якщо у цій рівності покласти х = b, то одержимо
Змінюючи змінну інтегрування t на х, одержимо формулу (6), що й треба було довести.
Відмітимо, що різницю позначають часто так:
F(x) , тобто F(x)=
Тому формулу Ньютона-Лейбніца (6) можна записати у вигляді
Ця формула вказує не тільки на зв'язок визначеного інтеграла з невизначеним, але й спосіб обчислення .
Приклад 1. Обчислити
Розв’язування.
2.2. Інтегрування частинами
Якщо проінтегрувати обидві частини рівності
d[u(x) · v(x)] = v(x)du(x) + u(x)dv(x)
в межах від а до b, то одержимо
Звідси одержуємо важливу формулу інтегрування частинами визначеного інтеграла.
(8)
Приклад 2. Обчислити інтеграл xcosxdx.
Розв'язування. Нехай u = x, dv = cosxdx , тоді знаходимо du = dx, (взята первісна без сталої С). Застосовуючи до заданого інтеграла формулу (8), одержимо
2.3. Заміна змінної у визначеному інтегралі
Теорема 4. Нехай задано інтеграл , де f (х) неперервна на відрізку [а,b]. Зробимо підстановку х = (t), аtß, де (t) неперервно диференційована функція на відрізку [,ß].
Інші реферати на тему «Математика»:
Зведення визначників до визначника Вандермонда
Однорідні рівняння
Знакочергуючі ряди. Ознака Лейбніца. Оцінка залишку ряду. Абсолютна і умовна збіжності знакозмінних рядів
Розклад функцій в степеневий ряд. Достатні умовирозкладу в ряд Тейлора. Застосування степеневих рядів до наближеного обчислення
Визначення та обчислення об’єму тіла за площами паралельних перерізів; об’єм тіла обертання