Сторінка
3

Визначені та невласні інтеграли

Якщо: 1 при зміні t від до ß змінна х змінюється від а до b, тобто (а)= а, (ß) = b;

2 складна функція f[(t)] визначена і неперервна на відрізку [,ß], тоді має місце рівність

(9)

Доведення. Нехай F(x) деяка первісна для функції f (х), тоб­то F'(X) = f (х). Розглянемо складну функцію F [(t)]. Застосовуючи правило диференціювання складної функції, одержимо

Це означає, що функція F[(t)] є первісною для функції

Звідси, за формулою Ньютона-Лейбніца і рівностей () = a та (ß) = b, одержуємо

що й треба було довести.

Приклад 3. Обчислити .

Розв’язування. Нехай t = , тоді t2 = 1 + хх = t2 - 1, dx= 2tdt. Знайдемо межі інтегрування, використовуючи рівність

Отже,

2.4. Методи наближеного обчислення

Для деяких неперервних надінтегральних функцій f(х) первісну не можна виразити елементарними функціями. У цих випадках обчислення визначного інтеграла за формулою Ньютона-Лейбніца неможливе.

Крім того, у практичній діяльності часто досить знати лише наближене значення визначеного інтеграла і знаходити це набли­жене значення такими методами, які дозволяють використовувати сучасну обчислювальну техніку.

Тому математики багатьох країн розробляють ефективні методи наближеного обчислення визначеного інтеграла.

Найбільш часто використовують три методи — метод прямо­кутників, метод трапецій та метод парабол (метод Сімпсона).

Якщо відрізок інтегрування [а,b] поділити на n рівних частин довжиною і позначити через середню точку відрізку визначений інтеграл можна обчислити за фор­мулою

(10)

яку називають формулою прямокутників. Чим більше буде n, тим менше буде крок і права частина (10) буде давати більш точне значення інтеграла.

Якщо поділити відрізок інтегрування точками ділення

а = х0 < x­1 < х2 < . < хk < . < хn-1 < хk = b

на n рівних частин довжиною i позначити значення функції в точках ділення f (хk), тоді визначений інтеграл можна обчислити за формулою

(11)

яку називають формулою трапецій. Легко бачити, що при зростанні n крок зменшується, тому значення інтеграла буде більш точним.

Якщо відрізок інтегрування [а,b] поділити на парну кількість рівних частин (тобто n = 2m) i позначити уk = f(xk), де xk = а + х·k — точки ділення, k = 0, 1, ., 2m, тоді визначений інтеграл можна обчислити за формулою

(12)

яку називають формулою Сімпсона. Ця формула дає більш точне значення визначеного інтеграла тому, що для її доведення вико­ристовується метод парабол, за яким на кожному відрізку [xk-1, xk] три значення функції f(х) входять до інтегральної суми.

4. Застосування визначених інтегралів

4.1. Обчислення площ

Якщо на відрізку [а,b] функція f(х)0, то згідно з форму­лою (4), обчислення площі криволінійної трапеції, зображеної на малюнку 1, можна знайти за формулою

Якщо на відрізку [a, b] функція f(х)0, то криволінійна тра­пеція, обмежена кривою f(х), відрізком [а, b] та прямими х = аі х = b, буде розташована нижче осі 0х. Визначений інтеграл у цьому випадку буде 0. Але площа є невід'ємною величиною, тому площу криволінійної трапеції, розташованої нижче осі 0х, треба знаходити за формулою

або (f(x)0)

Перейти на сторінку номер:
 1  2  3  4  5 


Інші реферати на тему «Математика»: