Сторінка
1
Система диференціальних рівнянь вигляду
де - сталі величини, називається лінійною однорідною системою з сталими коефіцієнтами. У матричному вигляді вона записується
.
1. Розв’язування систем однорідних рівнянь з сталими коефіцієнтами методом Ейлера.
Розглянемо один з методів побудови розв’язку систем з сталими коефіцієнтами.
Розв’язок системи шукаємо у вигляді вектора
.
Підставивши в систему диференціальних рівнянь, одержимо
Скоротивши на , і перенісши всі члени вправо, запишемо
Отримана однорідна система лінійних алгебраїчних рівнянь має розв’язок тоді і тільки тоді, коли її визначник дорівнює нулю, тобто
.
Це рівняння, може бути записаним у векторно-матричній формі
і воно називається характеристичним (чи віковим) рівнянням. Розкриємо його
.
Алгебраїчне рівняння -го ступеня має -коренів. Розглянемо різні випадки.
1. Всі корені характеристичного рівняння (власні числа матриці ) дійсні і різні. Підставляючи їх по черзі в систему алгебраїчних рівнянь
одержуємо відповідні ненульові розв’язки системи
, , … ,
що являють собою власні вектори, які відповідають власним числам , .
У такий спосіб одержимо - розв’язків
, , … , .
Причому оскільки -різні а - відповідні їм власні вектори, то розв’язки - лінійно незалежні, і загальний розв’язок системи має вигляд
.
Або у векторно - матричної формі запису
,
де - довільні сталі.
2. Нехай пара комплексно спряжених коренів. Візьмемо один з них, наприклад . Комплексному власному числу відповідає комплексний власний вектор
і, відповідно, розв’язок
Використовуючи залежність , перетворимо розв’язок до вигляду:
.
І, як випливає з властивості 4 розв’язків однорідних систем, якщо комплексна функція дійсного аргументу є розв’язком однорідної системи, то окремо дійсна і уявна частини також будуть розв’язками, тобто комплексним власним числам відповідають лінійно незалежні розв’язки
,.
3. Якщо характеристичне рівняння має кратний корінь кратності , тобто , то розв’язок системи рівнянь має вигляд
.
Підставивши його у вихідне диференціальне рівняння і прирівнявши коефіцієнти при однакових степенях, одержимо - рівнянь, що містять -невідомих. Тому що корінь характеристичного рівняння має кратність , то ранг отриманої системи . Уводячи довільних сталих і розв’язуючи систему, одержимо
, , .
2. Розв’язок систем однорідних рівнянь зі сталими коефіцієнтами матричним методом
Досить універсальним методом розв’язку лінійних однорідних систем з сталими коефіцієнтами є матричний метод. Він полягає в наступному. Розглядається лінійна система з сталими коефіцієнтами, що записана у векторно-матричному вигляді
.
Робиться невироджене перетворення , де вектор - нова невідома векторна функція. Тоді рівняння прийме вигляд
або .
Для довільної матриці завжди існує неособлива матриця , що приводить її до жорданової форми, тобто , де - жорданова форма матриці . І система диференціальних рівнянь прийме вигляд
1 2
Інші реферати на тему «Математика»:
Обчислення подвійного інтеграла в декартових і полярних координатах
Застосування подвійних інтегралів до геометричних і фізичних задач. Обчислення інтеграла Пуассона
Зведення визначників до визначника Вандермонда
Умовний екстремум. Метод множників Лагранжа. Метод найменших квадратів
Векторна функція скалярного аргументу. Похідна, її геометричний і механічний зміст. Кривизна кривої