Сторінка
2
.
Складемо характеристичне рівняння матриці
, або .
Алгебраїчне рівняння -го ступеня має коренів. Розглянемо різні випадки.
1. Нехай - дійсні різні числа. Тоді матриця має вигляд .
І перетворена система диференціальних рівнянь розпадається на - незалежних рівнянь
.
Розв’язуючи кожне окремо, отримаємо
.
Або в матричному вигляді
де .
Звідси розв’язок вихідного рівняння має вигляд . Для знаходження матриці треба розв’язати матричне рівняння
або ,
де - жорданова форма матриці . Якщо матрицю записати у вигляді
,
то для кожного з стовпчиків , матричне рівняння перетвориться до
, .
Таким чином, у випадку різних дійсних власних чисел матриця являє собою набір - власних векторів, що відповідають різним власним числам.
2. Нехай - комплексний корінь. Тоді відповідна клітка Жордана має вигляд
,
а перетворена система диференціальних рівнянь
Неважко перевірити, що розв’язок отриманої системи диференціальних рівнянь має вигляд
Або в матричному вигляді
Таким чином, комплексно-спряженим власним числам відповідає розв’язок де
3. Нехай - кратний корінь, кратності , тобто і йому відповідають лінійно незалежних векторів. Тоді клітка Жордана, що відповідає цьому власному числу, має вид
|
І перетворена підсистема, що відповідає власному числу , розпадається не дві підсистеми
.
.
Розв’язок першої знаходиться з використанням зазначеного в першому пункті підходу. Розглянемо другу підсистему. Запишемо її в координатному вигляді
Розв’язок останнього рівняння цієї підсистеми має вигляд
.
Підставимо його в передостаннє рівняння. Одержуємо
.
Загальний розв’язок лінійного неоднорідного рівняння має вигляд суми загального розв’язку однорідного і частинного розв’язку неоднорідних рівнянь, тобто
.
Загальний розв’язок однорідного має вигляд .
Частинний розв’язок неоднорідного шукаємо методом невизначених коефіцієнтів у вигляді
,
де - невідома стала. Підставивши в неоднорідне рівняння, одержимо
.
Звідси і загальний розв’язок неоднорідного рівняння має вигляд
.
Піднявшись ще на один крок нагору одержимо
.
Продовжуючи процес далі, маємо
.
Або у векторно - матричному вигляді
.
Додавши першу підсистему, одержимо
,
Для останніх двох випадків матриця знаходиться як розв’язок матричного рівняння
.
1 2
Інші реферати на тему «Математика»:
Диференціальні рівняння першого порядку, не розв’язані відносно похідної
Невласні інтеграли з безмежними границями та з необмеженою підінтегральною функцією
Інтегрування з допомогою заміни змінної та інтегрування частинами
Задача Коші. Лінійні диференціальні рівняння із сталими коефіцієнтами. Загальний та частинний розв’язки
Конструювання багатомірних модальних П-регуляторів