Сторінка
1
План
- Задачі, що приводять до похідної.
- Означення похідної.
- Геометричний та механічний зміст похідної.
- Рівняння дотичної і нормалі до графіка кривої.
- Частинні похідні функції декількох змінних, їх геометричний зміст.
ДИФЕРЕНЦІАЛЬНЕ ЧИСЛЕННЯ. ФУНКЦІЇ ОДНІЄЇ ТА ДЕКІЛЬКОХ ЗМІННИХ
1. Вступні відомості
Нехай матеріальна точка рухається прямолінійно, а закон руху її задається деякою функцією
(6.1)
1. Поставимо задачу: знайти швидкість точки в момент часу .
Нехай в деякий момент часу точка займала положенням (рис.6.1).Через проміжок часу точка займе положення і пройде шлях .
Відношення
(6.2)
називається середньою швидкістю руху точки.
Означення. Швидкістю точки в момент часу називається границя середньої швидкості на проміжку часу , коли прямує до нуля:
(6.3)
Зазначимо, що формула дає змогу знайти швидкість у момент часу тільки тоді , коли існує границя цього відношення.
Рис.6.1
2. Задача про дотичну до кривої. З поняттям дотичної до кривої в даній точці ми зустрічалися при вивченні кола за шкільною програмою, за якою давалося означення дотичної до кола як прямої лінії, що має з колом одну спільну точку. Проте це означення є окремим випадком. Його не можна поширити, наприклад, на незамкнуті криві. Тому треба дати загальне означення дотичної, яке б підходило як до замкнутих, так і до незамкнутих кривих.
Нехай маємо деяку довільну криву (рис.6.2, 6.3). Візьмемо на цій кривій точки та і через них проведемо пряму , яку називатимемо січною. Якщо точка переміщатиметься вздовж кривої, то січна повертатиметься навколо . Нехай , рухаючись вздовж кривої, наближається до точки , тоді довжина хорди прямує до нуля. Якщо при цьому й значення кута прямує до нуля, то пряма називається граничним положенням січної .
Рис.6.2 Рис.6.3
Означення. Дотичною до кривої в точці називається граничне положення січної , якщо точка прямує вздовж кривої до злиття з точкою .
Зауважимо, що яким би чином точка не наближалася по кривій до точки , січна повинна при цьому наближатися до того самого граничного положення (до тієї самої прямої). Тільки в цьому випадку кажуть, що в точці крива має дотичну. Граничне положення січної може не існувати.
Із рисунка (6.2) видно, з якого б боку точка по кривій не рухалася б до точки , січна , обертаючись навколо точки , при цьому наближається до тієї самої прямої . Якщо січна наближається до різних прямих (рис.6.3), залежно від того, з якого боку , то кажуть, що в даній точці
Інші реферати на тему «Математика»:
Лінійні неоднорідні диференціальні рівняння з постійними коефіцієнтами та правою частиною спеціального вигляду
Побудова множинних фільтрів для лінійних алгебраїчних систем
Поняття множини. Змінні та постійні величини
Особливості вивчення математики в профільних класах у сучасних умовах
Синтез систем з оптимізацією модальних регуляторів