Сторінка
6

Лінійна однорідна система з постійними коефіцієнтами. Застосування теорії диференціальних рівнянь в економіці

(12.79)

де коефіцієнт нахилу до споживання (); автономне (кінцеве) споживання; норма акселерації. Всі функції, що входять в систему (12.79), додатні.

Будемо вважати, що функції і задані – вони є характеристиками функціонування і еволюції даної держави. Потрібно знайти динаміку національного доходу або як функцію часу

Підставляючи вираз для із другого рівняння (12.79) і із третього рівняння в перше, одержимо лінійне диференціальне рівняння першого порядку

Будемо вважати, що основні параметри задачі і постійні. Тоді рівняння стає лінійним диференціальним рівнянням з постійними коефіцієнтами

(12.80)

Загальний розв’язок дорівнює сумі загального розв’язку однорідного рівняння і якого-небудь частинного розв’язку неоднорідного рівняння. В якості частинного розв’язку рівняння (12.133) візьмемо так званий рівноважний розв’язок, коли тобто

(12.81)

Неважко замітити, що ця величина додатна. Загальний розв’язок однорідного рівняння так що загальний розв’язок рівняння (12.80) має вигляд

(12.82)

Інтегральні криві рівняння (12.80) показані на рис.12.5. Якщо в початковий момент часу то і криві йдуть вниз від рівноважного розв’язку (12.81), тобто національний дохід з часом падає при заданих параметрах задачі і оскільки показник в експоненти додатний. Якщо ж то і національний дохід росте – інтегральні лінії йдуть вверх від рівноважного розв’язку Для автономного диференціального рівняння (12.80) стаціонарна точка (12.81) є точкою нестійкої рівноваги.

12.13.4. Неокласична модель росту

Нехай національний дохід, де однорідна виробнича функція першого порядку, об’єм капіталовкладень (виробничих фондів), об’єм затрат праці. Якщо величина фондоозброєності , то продуктивність праці виражається формулою

(12.83)

Будемо вважати, що виконуються наступні припущення:

1) має місце природний приріст в часі трудових ресурсів

2) інвестиції витрачаються на збільшення виробничих фондів і на амортизацію, тобто

де норма амортизації.

Тоді, якщо норма інвестицій, або

Рис.12.5 Рис.12.6

Із визначення фондоозброєності випливає, що

Диференціюючи дану рівність по і підставляючи вирази і одержимо рівняння відносно невідомої функції

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8 


Інші реферати на тему «Математика»: