Сторінка
6

Формування в учнів обчислювальних навичок з табличного і позатабличного множення і ділення

Під час вивчення таблиць і пізніше треба приділяти велику увагу вправам на запам’ятовування табличних результатів: скласти чотири приклади на множення і ділення з однаковими числами (4 • 3 = 12, 3 • 4 = 12, 12: 4 = 3, 12: 3 = 4), повторити таблиці по порядку і в розбивку, скласти напам’ять таблицю множення двох або на 2, трьох або на 3 і т. д., замінити число (24) добутком відповідних множників (8 • 3, 6 • 4), відгадати задумане число (якщо його множили на 8 і дістали 72). Корисно з цією метою разом з учнями скласти таблицю множення Піфагора і навчити їх нею користуватися.

Зауважимо, що заучують напам’ять лише результати множення, а відповідні випадки ділення учні повинні вміти швидко знаходити, користуючись таблицею множення. Знаючи, наприклад, що 7 • 8 = 56, вони повинні швидко розв’язувати приклади: 56: 7 = 8 і 56: 8 = 7. Під час тренування учні повинні міцно запам’ятати трійки чисел, наприклад: 3, 7, 21; 9, 8, 72 і т. д.

Для запам’ятовування табличних результатів потрібен деякий час, тому вчитель як у II, так і в III класі повинен систематично давати вправи на запам’ятовування таблиці множення.

Вивчивши всі таблиці множення, розглядають випадки множення і ділення з нулем.

Спочатку вводять випадок множення нуля на будь-яке число (0 • 5, 0 • 2, 0 • 7). Результат учні знаходять додаванням:

(0 • 2 = 0 + 0 = 0, 0 • 3 = 0 + 0 + 0 = 0). Розв’язавши ряд аналогічних прикладів, учні помічають, що при множенні нуля на будь-яке число буде нуль. Цим правилом вони надалі й керуються.

Якщо другий множник дорівнює нулю, то результат не можна знайти додаванням, не можна використати і переставлення множників, бо це нова область чисел, в якій переставна властивість множення не розкривалась. Тому друге правило: «Добуток будь-якого числа на нуль вважають таким, що дорівнює нулю» – учитель просто повідомляє дітям. Потім обидва ці правила застосовують у процесі виконання різних вправ на обчислення.

Ділення нуля на будь-яке число, яке не дорівнює нулю (0: 6), розглядають на основі зв’язку між компонентами і результатом множення. Учні міркують так: щоб 0 поділити на 6, треба знайти число, при множенні якого на 6 буде 0. Це нуль, бо 0 • 6 = 0. Отже, 0: 6=0. Внаслідок розв’язування ряду аналогічних прикладів учні помічають, що при діленні нуля на будь-яке число, яке не дорівнює нулю, частка дорівнює нулю. Надалі учні користуються цим правилом.

Як відомо, ділити на нуль не можна. Цей факт повідомляють дітям і пояснюють на прикладі: не можна 8 поділити на 0, бо немає такого числа, при множенні якого на 0 було б 8.

Позатабличне множення і ділення. Випадки позатабличного множення і ділення вивчають у такому порядку. Спочатку розглядають властивості множення числа на суму і суми на число. Потім вивчають множення і ділення чисел, які закінчуються нулем, вводять множення двоцифрового числа на одноцифрове і множення одноцифрового числа на двоцифрове. Далі вводять властивість ділення суми на число, на основі якого розкривають прийом ділення двоцифрового числа на одноцифрове. Нарешті, розглядають ділення двоцифрового числа на двоцифрове. Під час вивчення цієї теми вводять перевірку множення і ділення.

Розглянемо спочатку методику роботи над властивостями добутку і частки, а потім перейдемо до викладу методики вивчення обчислювальних прийомів.

Методика вивчення властивостей множення і ділення суми на число і множення числа на суму подібна до тієї, яку вже використовували в І класі під час розкриття властивостей додавання числа до суми, віднімання числа від суми тощо. Спочатку виконують підготовчу роботу, потім учні ознайомлюються з властивістю, після чого застосовують її під час виконання різних вправ. Пізніше, користуючись властивістю, розкривають прийоми позатабличного множення і ділення.

Підготовкою до вивчення властивості множення числа на суму буде добре знання конкретного змісту дії множення і правил про порядок виконання арифметичних дій у виразах без дужок.

Під час ознайомлення з властивістю множення числа на суму можна використати такий прийом. Учні читають вираз 4 • (3+2) і обчислюють його значення вже відомим способом:

4 • (3 + 2) = 4 • 5 = 20.

Цей спосіб корисно ще раз пояснити за допомогою такого рисунка (рис. 5).

Рис. 5

Користуючись цим рисунком, учні можуть відшукати й інший спосіб: спочатку дізнаємось, скільки чорних кружечків (4 • 3), потім скільки білих кружечків (4 • 2), нарешті, скільки всього кружечків (4 • 3 + 4 • 2).

Запис:

4 • (3 + 2) = 4 • 3 + 4 • 2 = 20.

У цьому випадку множили на кожний доданок і знайдені результати додали. Порівнявши знайдені результати розв’язання прикладу різними способами, учні помічають, що вони однакові.

Потім учні розв’язують двома способами приклади виду: 8 • (2+4), 4 • (6 + 4) і переконуються, що кожного разу дістають однакові результати. На цій підставі вони роблять висновок, що множити число на суму можна різними способами, дістаючи однакові результати: можна обчислити суму і множити число на знайдений результат, а можна множити число на кожний доданок і знайдені результати додати.

Для засвоєння цієї властивості учні виконують різні вправи:

1) Обчисліть результат різними способами:

10 • (6 + 2) = 10 • 8 = 80

10 • (6 + 2) = 10 • 6 + 10 • 2 = 80

2) Обчисліть результат найзручнішим способом:

8 • (10 + 2) = 8 • 10 + 8 • 2 = 96

9 • (6 + 4) = 9 • 10 = 90

Через кілька уроків треба ввести обернені вправи, в яких суму добутків треба замінити добутком числа на суму, наприклад: 6 • 4 + 6 • 5 = 6 • (4 + 5).

Міркування: число 6 береться доданком 4 рази, а потім це саме число 6 береться доданком ще 5 раз, всього (4 + 5) раз, можна записати:

6 • 4 + 6 • 5 = 6 • (4 + 5).

Увагу учнів треба звернути на умову, при якій така заміна можлива, тобто на рівність перших множників. Тому корисно пропонувати і такі добутки, в яких перші множники різні, наприклад: 4 • 3 + 5 • 6. Діти повинні впевнитись, що таку суму двох добутків не можна замінити добутком числа на суму.

Для цього розглядають задачі, запис розв’язання яких у вигляді виразу є сумою двох добутків з однаковими або різними множниками.

Аналогічно вводять інші властивості – множення суми на число і ділення суми на число.

Зазначимо, що учні, ознайомившись із властивостями множення числа на суму і суми на число, іноді плутають їх з раніше засвоєними властивостями додавання суми до числа і числа до суми, наприклад: (10 + 6) • 4 = 10 • 4 + 6. Тут учні множили на число 4 тільки перший доданок, а потім додали другий, тобто вони робили так само, як і додаючи число до суми. Тому корисно вводити спеціальні вправи, які запобігли б плутанню вивчених властивостей. Так, можна пропонувати розв’язування і наступне порівняння пар прикладів виду:

(6 + 4) • 3 і (6 + 4) + 3; доцільно включати вправи, в яких треба закінчити запис, наприклад:

8 • (10 + 2) = 8 • 10 +… і 8 + (10 + 2) = (8+ 10) +… і т. д.

Засвоєння властивостей множення числа на суму, множення і ділення суми на число безпосередньо підводить учнів до розкриття прийомів позатабличного множення і ділення. До того ж треба врахувати, що під час вивчення додавання і віднімання в межах 100 в учнів уже сформувалося вміння користуватися властивостями арифметичних дій для обґрунтування обчислювальних прийомів додавання і віднімання, тому, вводячи прийоми позатабличного множення і ділення, треба надати учням більше самостійності.

Перейти на сторінку номер:
 1  2  3  4  5  6  7  8  9  10 


Інші реферати на тему «Педагогіка, виховання»: