Сторінка
6
Взявши евклідовий простір за основний в побудові проективного простору ми відмовилися від аксіоматичного методу побудови геометрії. Центральне місце в програмі займають принципи двоїстості, теорема Дезарга, подвійне (складне) відношення, гармонізм, проективні відповідності форм першого ступеня (колінеації), проективна теорія кривих другого порядку. Детально розглянута з проективної точки зору побудова афінної і метричної геометрії, яка має безпосереднє відношення до курсу елементарної (шкільної) геометрії. Кожна із зазначених геометрій (афінна й метрична) визначається своєю групою (за означенням Клейна). У побудованій груповій класифікації проективних перетворень містяться афінна, метрична група і група рухів.
Поданий змістовий компонент відповідає цілям, що визначені потребами розвитку суспільства, науки, культури та особистості; проявляється у введенні до нього тих знань, умінь і навичок, які відповідають сучасному рівню розвитку соціуму, наукового знання й забезпечують можливості особистісного зростання майбутнього фахівця.
Безумовно, впровадження етапу предметних технологій технології забезпечення якості фундаментальної підготовки майбутніх учителів математики передбачає не тільки засвоєння змісту комплексу навчальних дисциплін, але й певну організацію педагогічного процесу, використання форм, методів, засобів, що забезпечують творчий розвиток, соціальне, культурне становлення студента, а також підвищують якість фундаментальної підготовки в цілому.
У сучасній дидактиці розроблена велика кількість форм, кожна з них розкриває ту або іншу сторону організації навчання.
У педагогічних джерелах термін "форма" використовується в різних тлумаченнях. "Форма" в перекладі з латинської означає зовнішній вигляд. Відповідно, форма навчання – це зовнішня сторона організації навчального процесу, що відображає спосіб організації діяльності тих, хто навчається, і залежить від: кількості тих, хто навчається; характеру взаємодії суб'єктів навчання; ступеня самостійності тих, хто навчається; специфіки педагогічної діяльності тощо.
У вищому закладі освіти функціонують різноманітні організаційні форми навчання: лекції, практичні заняття, науково-дослідна робота студентів (проблемні групи, олімпіади, науково-практичні конференції).
Поетапне управління фундаментальною підготовкою передбачає застосування різних типів лекцій, кожна з яких виконує певну роль на конкретному етапі навчання: репродуктивного рівня (вступна, тематична, оглядова) та продуктивного рівня (проблемна, лекція-візуалізація тощо).
Метою використання системи лекцій репродуктивного рівня є передача інформації в готовому вигляді, формування інтересу до проективної геометрії. Завдання викладача – методично правильний підбір джерел інформації для самостійного опрацювання. Так, вступна лекція має на меті дати студентам загальне уявлення про завдання всього курсу проективної геометрії, розкрити структуру, зв'язок з іншими розділами геометрії (аналітичною, конструктивною, диференціальною) та іншими дисциплінами. Головне завдання вступної лекції – сприяти розвитку в студентів інтересу до предмета з метою його творчого засвоєння. Тематична лекція присвячується розкриттю конкретної теми навчальної програми з конкретної дисципліни (наприклад, низка лекцій, присвячених теоремі Дезарга: "Теорема Дезарга в просторі (пряма і обернена). Теорема Дезагра на площині. Двоїстость прямої і оберненої теореми Дезарга на площині" тощо). Оглядові лекції читають студентам перед державними іспитами.
Метою лекцій продуктивного рівня є розвиток математичного мислення, ознайомлення з актуальними проблемами математики, розвиток професійної мотивації тощо. В ході проблемної лекції нове вводиться як невідоме, яке необхідно "відкрити". Мета викладача, створивши проблемну ситуацію, – спонукати студентів до пошуків вирішення проблеми, крок за кроком підводячи їх до шуканого результату. Для цього новий теоретичний матеріал подається у формі проблемного завдання. В його умовах є суперечності, які потрібно знайти й розв'язати. На нашу думку, саме такий тип лекції є доречним при вивченні перших тем програми курсу: "Побудова евклідової моделі проективного простору", "Великий та малий принцип двоїстості". Лекція-візуалізація виникла як результат пошуку нових можливостей реалізації принципу наочності. Матеріал подають усно, відтворюючи у візуальній формі. Демонстраційні матеріали виступають носіями змістової інформації, яка сприймається, усвідомлюється й може служити опорою адекватних думок і практичних дій. Наприклад, у допомогу викладачеві студентом п'ятого курсу фізико-математичного факультету Черкашиним І. була створена демонстраційна модель для побудови відповідних елементів проективної відповідності двох форм першого ступеня, точок кривої другого порядку за теоремою Паскаля, прямих пучка другого порядку за теоремою Бріаншона.
В основі лекцій зазначеного рівня лежить продуктивна інформація. Її створює студент на основі випередження її засвоєння, за таких умов він констатує знання й шляхи їх здобуття у власній свідомості. Для реалізації поставлених завдань викладач концентрує увагу студентів на проблемах, які необхідно розв'язати на черговому лекційному занятті (принцип випереджального навчання). Головне – вміти правильно виявити, позначити й сформулювати ці проблеми. Таким чином, студент, виконуючи завдання викладача перед лекцією, вже знає певний матеріал і має власні думки щодо окреслених викладачем проблем. Очевидно, що в такій ситуації виникає підвищена мотивація до навчання: студенту цікаво, яке розв'язання проблем, виявлених на лекції, висуне викладач і як воно співвіднесеться з його власним. Студент і викладач на таких лекціях виступають як рівні колеги; в основі спілкування лежить діалог в його внутрішньому прояві, що підвищує ефективність навчання на лекції.
Загальним для всіх типів лекцій є їх професійна спрямованість. У процесі викладання моделюється не лише зміст, але й враховуються педагогічні умови, які на нього впливають: специфічна форма фундаментальної підготовки майбутніх учителів математики, особистість самого викладача, власна позиція його щодо питань фундаментальної підготовки, вміння пояснити існуючі суперечності визначеної проблеми, показати розв’язання деяких суперечностей науковими розробками зарубіжних і українських науковців, що допомагає майбутнім педагогам визначити свою позицію стосовно фундаментальної підготовки.
Важливою формою фундаментальної підготовки у вищому навчальному закладі є науково-дослідна робота. Обов’язковими видами цієї роботи є написання курсових, а також, за бажанням, дипломних робіт. У розробці тематики визначених видів робіт ми дотримувалися системного підходу, який передбачає наскрізне дослідження теми. Також враховували, що обсяг тематики курсових робіт повинен узгоджуватися з тематикою дипломних робіт. Особливістю написання курсових робіт на фізико-математичному факультеті є, по-перше, те, що мета їх написання – розкрити питання, які не ввійшли до навчальної програми або на які відведено мало годин (наприклад, функціональні рівняння); по-друге, пояснення матеріалу за допомогою іншого розділу певного навчального предмета (довести подане твердження, спираючись на апарат аналітичної, проективної та диференціальної геометрії) або іншої навчальної дисципліни (фізики, інформатики тощо); по-третє, обов’язкове застосування цієї теорії в процесі роз’язання задач. Тематика дипломних робіт дає можливість студентам глибше відстежити певні аспекти досліджуваної проблеми.