Сторінка
5
Кожна людина смертна.
Сократ – людина.
Звідси випливає, що Сократ смертний.
Очевидно, що висловлення "Сократ смертний" не є логічним висновком засновків "Кожна людина смертна" і "Сократ – людина". Проте коректність наведених міркувань ні в кого не викликає сумніву. Очевидно, що вона зумовлена якимсь особливим змістом слова "кожна".
Введемо додаткові позначення. Нехай x позначає деяку змінну, значення якої можуть мати деяку властивість P. Такі змінні називаються предметними. Висловлення "x має властивість P" позначимо P(x). Наприклад, висловлення "Ціле число x є парним" позначимо E(x). Значення такого висловлення залежить від значення цієї змінної. При x=1 висловлення E(x) хибне, при x=2 – істинне. Замість літери x можна записати її значення, наприклад, E(2).
Речення "Кожне значення x має властивість P", або "Всі значення x мають властивість P", або "Всі x мають властивість P", або "При всіх x справджується властивість P" позначимо записом "x P(x). У цьому записі частина "x називається квантором загальності. Слово "квантор" походить від слова "квантифікація", що означає "кількісне вираження". Продовжуючи приклад про парні числа, зауважимо, що твердження "x E(x) є хибним.
Речення "Існує значення x, що має властивість P", або "Деякі значення x мають властивість P", або "При деякому значенні x справджується властивість P", або "Деякі x мають властивість P" позначимо записом $x P(x). У цьому записі частина $x називається квантором існування. Очевидно, що у прикладі про парні числа твердження $x E(x) є істинним.
Очевидно, що
"x P(x) ® $x P(x),
причому твердження "x P(x) і $x P(x) нерівносильні.
Розглянемо деякі з можливих застосувань пропозиційних зв'язок до виразів із кванторами. Заперечення Ø("x P(x)) читається як "неістинно, що всі значення x мають властивість P", тобто як "існує значення x, що не має властивості P". Таке речення можна позначити як $x ØP(x). Таким чином,
Ø("x P(x)) º $x ØP(x).
Аналогічно
Ø($x ØP(x)) º "x ØP(x).
Висловлення "x P(x) Ù "x Q(x) читається як "всі значення x мають властивість P і всі значення x мають властивість Q", тобто "всі значення x мають властивість P і властивість Q". Таким чином,
("x P(x))Ù("x Q(x)) º "x (P(x)ÙQ(x)).
Висловлення "x P(x) Ú "x Q(x) читається як "усі значення x мають властивість P або всі значення x мають властивість Q". З цього речення випливає, що "усі значення x мають властивість P або властивість Q", але ці два речення не рівносильні. Таким чином, "x(P(x)ÚQ(x)) є логічним висновком висловлення ("x P(x))Ú("x Q(x)), тобто
(("x P(x))Ú("x Q(x))) ® "x(P(x)ÚQ(x)),
але вони нерівносильні.
Приклад. Якщо P(x) позначає речення "x – парне число", а Q(x) – "x – непарне число", то висловлення "x(P(x)ÚQ(x)) є істинним, а ("x P(x))Ú("x Q(x)) – хибним.
Насамкінець, розглянемо речення з двома й більше кванторами. Вони з'являються, коли йдеться про властивості пар, трійок тощо змінних. Наприклад, речення "При будь-якому натуральному значенні x існує значення y, таке, що x є дільником y" можна записати як
"x ($y D(x, y)),
де D(x, y) позначає речення "x є дільником y".
Речення вигляду "При будь-якому значенні x справджується, що при будь-якому значенні y істинно A(x, y)" можна позначити так:
"x ("y A(x, y)).
Будемо опускати дужки, записуючи, наприклад, "x $y D(x, y) або "x "y A(x, y). Останній вираз можна прочитати також, як "При будь-якому значенні x і при будь-якому значенні y істинно A(x, y)".
Аналогічно речення вигляду " При будь-якому значенні x і при будь-якому значенні y і при будь-якому значенні z істинно A(x, y, z)" можна позначити виразом
"x "y "z A(x, y, z).
І так далі. Розглянемо, наприклад, твердження великої теореми Ферма:
Рівняння zn=xn+yn, де n – ціле число, більше 2, не має розв'язків у цілих додатних числах.
Одним із можливих записів цього твердження є такий:
"x "y "z "n ((n>2) ® (zn¹xn+yn)).
Інші реферати на тему «Математика»:
Числові ряди. Збіжність і розбіжність. Сума ряду. Дії над збіжними рядами
Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)
Диференціальні рівняння вищих порядків
Інтегрування правильних дробів, раціональних дробів, ірраціональостей
Основні поняття математичного програмування. Побудова моделі задачі лінійного програмування