Сторінка
3
звідки випливає, що
або
Розглянемо тепер два ряди:
,
.
Другий ряд збігається, оскільки його члени утворюють геометричну прогресію. Члени першого ряду, починаючи з , менші за члени другого ряду, а тому він за ознакою порівняння збігається.
2) Нехай Тоді, починаючи з деякого номера
, будемо мати
або
Але, якщо всі члени даного ряду, починаючи з деякого , більші за одиницю, то ряд розбігається, оскільки його загальний член не прямує до нуля.
Зауваження. Як і в ознаці Даламбера, випадок вимагає додаткового дослідження. Серед таких рядів можуть зустрітися як збіжні, так і розбіжні.
Приклад. Дослідити збіжність ряду
.
Р о з в ‘ я з о к. Використаємо радикальну ознаку Коші:
>1 – ряд розбігається.
13.6. Інтегральна ознака Коші
Розглянемо ще одну ознаку, яка відрізняється по формі від всіх попередніх.
Нехай ряд має форму
, (13.11)
і є значення при
деякої функції
, визначеної для
. Припустимо, що ця функція неперервна, додатна і монотонно спадна.
Теорема. Нехай члени ряду (13.11) додатні і не спадають, тобто
(13.12)
і нехай така неперервна неспадна функція, що
(13.13)
Тоді :
1) якщо невласний інтеграл збігається, то збігається і ряд (13.11);
2) якщо невласний інтеграл розбігається, то розбігається і ряд (13.11).
Д о в е д е н н я. Зобразимо члени ряду геометрично, відкладаючи на осі абсцис номера членів ряду, а на осі ординат – відповідні значення членів ряду . Побудуємо на цьому ж рисунку графік неперервної функції
, що задовольняє умові (13.13). Ясно, що ця функція буде проходити через точки
(рис. 13.1).
|
Рис.13.1 Рис.13.2
Зауважимо, що площа го прямокутника дорівнює
, а сума площ побудованих
прямокутників дорівнює частинній сумі ряду
З іншого боку, ступенева фігура, утворена цими прямокутниками, містить область, що обмежена кривою
і прямими
; площа цієї області дорівнює
Отже,
(13.14)
На рис.13.2 перший (зліва) із побудованих прямокутників має висоту , а тому його площа буде
Площа другого прямокутника
і т.д. Площа останнього із побудованих прямокутників буде
Отже, сума площ всіх побудованих прямокутників дорівнює
З іншого боку, як легко помітити, ступенева фігура, утворена цими прямокутниками, міститься всередині криволінійної трапеції, обмеженої кривою і прямими
Площа цієї криволінійної трапеції дорівнює Тому
звідки
. (13.15)
Розглянемо тепер обидва випадки.
1). Нехай невласний інтеграл збігається. Оскільки
то в силу нерівності (1.15) будемо мати
тобто частинна сума ряду, яка є монотонно зростаючою (члени ряду додатні) , залишається обмеженою. Значить, при
має скінчену границю
, тобто ряд збігається.
2). Нехай невласний інтеграл розбігається, тобто
Це значить, що
необмежено зростає при зростанні
Але, в силу нерівності (13.14),
також необмежено зростає при зростанні
, тобто ряд розбігається.
Інші реферати на тему «Математика»:
Функціональний ряд, область його збіжності. Cтепеневі ряди. Теорема Абеля
Лінійні диференціальні рівняння другого порядку з постійними коефіцієнтами
Обчислення подвійного інтеграла в декартових і полярних координатах
Метод зведення визначника до трикутного вигляду
Невласні інтеграли з безмежними границями та з необмеженою підінтегральною функцією