Сторінка
2
(13.7)
то:
1) при ряд (13.4) збігається;
2) при ряд (13.4) розбігається;
3) при теорема не дає відповіді на питання про збіжність чи розбіжність ряду.
Д о в е д е н н я. 1) Нехай Розглянемо деяке число що задовольняє умові Із означення границі та співвідношення (13.7) випливає, що для всіх буде виконуватися нерівність
(13.8)
Дійсно, оскільки величина прямує до границі то , починаючи з деякого номера різниця між величиною і числом може бути зроблена за абсолютною величиною менше за довільне як завгодно мале додатне число, в тому числі, менше за тобто
Звідси і випливає нерівність (13.8).
Запишемо нерівність (13.8) для різних значень починаючи з номера :
. (13.9)
Розглянемо тепер два ряди:
,
.
Другий ряд є геометричною прогресією з додатним знаменником , тому він збігається. Члени цього ряду, починаючи з , менші за члени першого ряду. За першою теоремою порівняння рядів ряд - збігається, а це і є ряд (13.4).
2) Нехай Тоді з рівності (13.7) випливає (при ) , що, починаючи з деякого номера , буде виконуватися нерівність
,
або Але це означає, що члени ряду (13.4) зростають, починаючи з номера , а тому загальний член ряду не прямує до нуля. Значить, ряд розбігається.
Зауваження 1. Ряд (13.4) буде розбігатися і в тому випадку, коли Це випливає з того, що починаючи з деякого номера , буде виконуватися нерівність , або .
Зауваження 2. Якщо , то ознака Даламбера не дає можливості встановити, збігається чи розбігається даний ряд. В одному випадку такий ряд може збігатися, а в іншому – розбігатися. Для вирішення питання про збіжність таких рядів необхідно застосувати іншу ознаку.
Зауваження 3. Якщо , але відношення для всіх номерів , починаючи з деякого, більше за одиницю, то такий ряд розбігається.
Це випливає з того, що при буде виконуватися нерівність , і загальний член не прямує до нуля при
Приклад 1. Дослідити збіжність ряду
.
Р о з в ‘ я з о к. Використаємо ознаку Даламбера : ,
і
, тому ряд розбігається.
Приклад 2. Дослідити збіжність ряду .
Р о з в ‘ я з о к. Використовуючи ознаку Даламбера, одержимо
<1; отже, даний ряд збігається.
13.5. Радикальна ознака Коші
Теорема. Якщо для ряду з додатними членами (13.4) величина
, (13.10)
то:
1) при ряд (13.4) збігається;
2) при ряд (13.4) розбігається;
3) при теорема не дає відповіді на питання про збіжність чи розбіжність ряду.
Д о в е д е н н я. 1) Нехай Розглянемо число , що задовольняє умові Починаючи з , будемо мати
Інші реферати на тему «Математика»:
Особливості вивчення математики в профільних класах у сучасних умовах
Інтегрування правильних дробів, раціональних дробів, ірраціональостей
Основні властивості означеного інтеграла. Формула Ньютона- Лейбніца
Конструювання багатомірних модальних П-регуляторів
Побудова множинних фільтрів для лінійних алгебраїчних систем