Сторінка
2
Виберемо довільним чином в кожній частині точку і тоді маса тіла (по аналогії із об’ємом циліндричного тіла) дорівнює
|
(11.4)
Знову ж таки на вираз (11.4) можна дивитися як на певну операцію над функцією , що задана в трьохвимірному просторі .
Ця операція на цей раз називається операцією потрійного інтегрування (за Ріманом 1)), а її результат – визначеним потрійним інтегралом, що позначається так:
Отже,
(11.5)
До знаходження таких границь приводять не тільки задачі про визначення об’єму циліндричного тіла і знаходження маси, але й інші задачі.
Нижче ми побачимо, що частина теорії кратного інтегрування, зокрема, теореми існування і теореми про аддитивні властивості інтеграла, може бути викладена цілком аналогічно як в одновимірному, так і в вимірному випадку. Проте в теорії кратних інтегралів виникають певні труднощі, яких не було в теорії звичайного означеного інтеграла.
Справа в тому, що однократний інтеграл Рімана 1) ми визначали для дуже простої множини – відрізку який дробився знову на відрізки. Ніяких труднощів у визначенні довжини (одновимірної міри) відрізків не виникало. Проте у випадку подвійних, потрійних і, взагалі, кратних інтегралів область інтегрування доводиться ділити (лініями, поверхнями, гіперповерхнями) на частини з криволінійними границями, і виникає питання визначення поняття площі, об’єму або взагалі вимірної міри цих частин.
1) Б. Ріман (1826-1866) – німецький математик.
Поняття про міру Жордана 1). В двохвимірному випадку ми будемо мати справу з обмеженими областями, що мають гладку границю (рис. 11.2) або кусково-гладку границю, що складається із кінцевого числа гладких кусків (ліній). Ці області в свою чергу доводиться ділити на частини, що мають кусково-гладку границю. Кожній такій області і деяким іншим множинам можна привести у відповідність додатне число яке називається площею або двохвимірною мірою Жордана . При цьому виконуються такі властивості:
1) якщо прямокутник з основою і висотою то
2) якщо і мають міри то
3) якщо область розрізана за допомогою кусково-гладкої кривої на дві частини і то
Існують множини двохвимірної міри, що дорівнюють нулю, такі, як точка, відрізок, гладка або кусково-гладка крива.
В трьохвимірному випадку нас будуть цікавити області, що мають своєю границею кусково-гладкі поверхні. Куля, еліпсоїд, куб можуть служити прикладом таких поверхонь.
Поверхня називається гладкою, якщо в довільній її точці
можна провести дотичну площину, що неперервно змінюється разом з цією точкою. Поверхня називається кусково-гладкою, якщо її можна
розрізати на кінцеве число гладких кусків. По лінії розрізів дотичні площини можуть і не існувати.
Для трьохвимірних обмежених областей з кусково-гладкими границями можна визначити їх об’єм (трьохвимірну міру), тобто додатне число , що задовольняє таким властивостям:
1) якщо прямокутний паралелепіпед з ребрами то
2) якщо і мають міри то
3) якщо область розрізана за допомогою кусково-гладкої поверхні на дві частини і то
1) К. Жордан (1838-1922) – французький математик
Є множини трьохвимірної міри, що дорівнює нулю. Такими є точка, відрізок, плоский прямокутник, гладка або кусково-гладка поверхня.
Означення. Дамо тепер визначення кратного інтеграла, не розглядаючи задачі геометричного або фізичного змісту.
Нехай в вимірному просторі задана обмежена область з кусково-гладкою границею і на(або на ) задана функція Розріжемо довільним чином на частини , що перетинаються хіба що по своїх границях, які будемо вважати кусково-гладкими. Виберемо в кожній частині по довільній точці і складемо суму
Інші реферати на тему «Математика»:
Рівняння в повних диференціалах
Достатні ознаки збіжності рядів з додатніми членами: ознаки порівняння, Даламбера, радикальна та інтегральна ознаки Коші
Основні правила диференціювання. Таблиця похідних
Системи лінійних диференціальних рівнянь. Загальні положення
Побудова множинних фільтрів для лінійних алгебраїчних систем