Сторінка
2
Виберемо довільним чином в кожній частині точку і тоді маса тіла
(по аналогії із об’ємом циліндричного тіла) дорівнює
|
(11.4)
Знову ж таки на вираз (11.4) можна дивитися як на певну операцію над функцією , що задана в трьохвимірному просторі
.
Ця операція на цей раз називається операцією потрійного інтегрування (за Ріманом 1)), а її результат – визначеним потрійним інтегралом, що позначається так:
Отже,
(11.5)
До знаходження таких границь приводять не тільки задачі про визначення об’єму циліндричного тіла і знаходження маси, але й інші задачі.
Нижче ми побачимо, що частина теорії кратного інтегрування, зокрема, теореми існування і теореми про аддитивні властивості інтеграла, може бути викладена цілком аналогічно як в одновимірному, так і в вимірному випадку. Проте в теорії кратних інтегралів виникають певні труднощі, яких не було в теорії звичайного означеного інтеграла.
Справа в тому, що однократний інтеграл Рімана 1) ми визначали для дуже простої множини – відрізку який дробився знову на відрізки. Ніяких труднощів у визначенні довжини (одновимірної міри) відрізків не виникало. Проте у випадку подвійних, потрійних і, взагалі,
кратних інтегралів область інтегрування доводиться ділити (лініями, поверхнями, гіперповерхнями) на частини з криволінійними границями, і виникає питання визначення поняття площі, об’єму або взагалі
вимірної міри цих частин.
1) Б. Ріман (1826-1866) – німецький математик.
Поняття про міру Жордана 1). В двохвимірному випадку ми будемо мати справу з обмеженими областями, що мають гладку границю (рис. 11.2) або кусково-гладку границю, що складається із кінцевого числа гладких кусків (ліній). Ці області в свою чергу доводиться ділити на частини, що мають кусково-гладку границю. Кожній такій області і деяким іншим множинам можна привести у відповідність додатне число
яке називається площею або двохвимірною мірою Жордана . При цьому виконуються такі властивості:
1) якщо прямокутник з основою
і висотою
то
2) якщо і
мають міри
то
3) якщо область розрізана за допомогою кусково-гладкої кривої на дві частини
і
то
Існують множини двохвимірної міри, що дорівнюють нулю, такі, як точка, відрізок, гладка або кусково-гладка крива.
В трьохвимірному випадку нас будуть цікавити області, що мають своєю границею кусково-гладкі поверхні. Куля, еліпсоїд, куб можуть служити прикладом таких поверхонь.
Поверхня називається гладкою, якщо в довільній її точці
можна провести дотичну площину, що неперервно змінюється разом з цією точкою. Поверхня називається кусково-гладкою, якщо її можна
розрізати на кінцеве число гладких кусків. По лінії розрізів дотичні площини можуть і не існувати.
Для трьохвимірних обмежених областей з кусково-гладкими границями можна визначити їх об’єм (трьохвимірну міру), тобто додатне число
, що задовольняє таким властивостям:
1) якщо прямокутний паралелепіпед з ребрами
то
2) якщо і
мають міри
то
3) якщо область розрізана за допомогою кусково-гладкої поверхні на дві частини
і
то
1) К. Жордан (1838-1922) – французький математик
Є множини трьохвимірної міри, що дорівнює нулю. Такими є точка, відрізок, плоский прямокутник, гладка або кусково-гладка поверхня.
Означення. Дамо тепер визначення кратного інтеграла, не розглядаючи задачі геометричного або фізичного змісту.
Нехай в вимірному просторі
задана обмежена область
з кусково-гладкою границею
і на
(або на
) задана функція
Розріжемо
довільним чином на частини
, що перетинаються хіба що по своїх границях, які будемо вважати кусково-гладкими. Виберемо в кожній частині
по довільній точці
і складемо суму
Інші реферати на тему «Математика»:
Випуклість і вгнутість графіка функції, точки перегину. Асимптоти графіка функції
Диференціал функції, його геометричний зміст. Лінеаризація функції
Маса лінії. Координати центра ваги плоскої кривої та фігури
Поняття множини. Змінні та постійні величини
Похідна за напрямком і градієнт функції, основні властивості