Сторінка
1
План
- Інтегрування частинами
- Інтегрування часток
- Заміна змінної
1. Інтегрування частинами
Нехай і – диференційовані функції на
Тоді або
Звідси
(8.16)
Формула (8.16) називається формулою інтегрування частинами в невизначеному інтегралі.
Користуючись формулою (8.16), рекомендується обчислення інтегралів від таких функцій :
де –поліном , – раціональна функція . Описати всі можливі випадки застосування формули інтегрування частинами неможливо. Інтегруючи такі вирази, завжди виникає дилема : що взяти за, а що – за . Інтегруючи вирази вигляду , , після того як підінтегральна функція буде розписана за властивостями 40 і 50 , одержимо інтеграли вигляду , де - одна з функцій в яких слід за брати , бо, в протилежному випадку, інтеграл ускладнюватиметься за рахунок зростання степенів . В інтегралах , де - одна з функцій вигідно за брати . В інших випадках вибір здійснюється залежно від того, при якому з виборів легше знайти за , хоч це теж не є абсолютною істиною . Іноді доводиться експериментувати .
Інтегруючи вирази , доцільно за взяти . Знаходження із співвідношень теж здійснюється інтегрування частинами .
Для прикладу знайдемо
Приймаючи, а , знайдемо
Далі матимемо , тобто дістанемо інтеграл .
Знову, взявши , знайдемо . Отже , одержимо таку систему рівнянь відносно та :
Звідси
Приклад 1 .
Позначивши ,
одержимо . Звідси
. (8.17)
Остання формула є рекурентною, тобто , знаючи , що , можна поступово знайти , де – ціле число,
більше за одиницю . Наприклад, при
Звідси .
Приклад 2. .
Інші реферати на тему «Математика»:
Задачі, що приводять до похідної. Визначення похідної, її геометричний і механічний зміст
Системи лінійних однорідних диференціальних рівнянь з сталими коефіцієнтами
Наближене розв’язування рівнянь: графічне відокремлення коренів, методи проб, хорд і дотичних
Конструювання багатомірних модальних П-регуляторів
Особливості вивчення математики в профільних класах у сучасних умовах