Сторінка
5
Точок, в яких похідна не існує, немає.
Обчислимо значення функції в точках (ці точки належать відрізку ), а також на кінцях відрізка, тобто в точках . Маємо
Отже, найбільше значення становить , найменше -
Щоб знайти найбільше (найменше) значення функції замкненій області , потрібно знайти значення функції у всіх критичних точках і порівняти їх з найбільшими (найменшими) значеннями функції на границях області: найбільше і найменше із цих значень і буде найбільшим і найменшим значенням функції в даній області.
Приклад. Знайти найбільше і найменше значення функції в трикутнику (рис. 6.14), обмеженому прямими .
Р о з в ’ я з о к.
Знайдемо критичні точки функції:
;
;
Оскільки в даній області , то
У критичній точці функція приймає значення
.
Рис.6.12
Дослідимо поведінку функції на границях області.
На прямих і . На прямій ця функція є функцією однієї змінної , оскільки ;
.
Знайдемо найбільше і найменше значення функції на відрізку :
Критична точка . В цій точці . На кінцях відрізка . Отже, функція досягає найбільшого значення в точці , а найменшого – в точці . Найбільше значення , найменше значення .
Зауваження. До знаходження відповідно найбільшого чи найменшого значення певної функції зводиться цілий ряд практичних задач.