Сторінка
3
Оскільки для похідних виконується співвідношення
………………………………………….
то після підстановки одержимо
Розкривши кожний з визначників, і з огляду на те, що визначники з однаковими стовпцями дорівнюють нулю, одержимо
.
Або
.
Розділивши змінні, одержимо
.
Проінтегруємо в межах ,
,
або
.
Взагалі кажучи, доведення проводилося в припущенні, що система рівнянь може залежати від часу, тобто
.
Отримана формула називається формулою Якобі.
Інші реферати на тему «Математика»:
Похідні і диференціали вищих порядків. Функції, задані параметрично, їх диференціювання
Синтез систем по оптимізації їх керованості
Лінійні неоднорідні системи
Задачі геометричного і фізичного характеру, що приводять до диференціальних рівнянь
Квадратичні форми, їх приведення до діагонального (канонічного) вигляду