Сторінка
2
Підставимо та
у рівняння (12.38):
(12.42)
Оскільки - корінь характеристичного рівняння,
а дискримінант дорівнює нулю (корінь
кратний), то
або
Отже, рівняння (12.42) спрощується й після скорочення на
набуває вигляду
. Його загальний розв’язок
отримується за допомогою інтегрування двічі і має вигляд
Зокрема, якщо вибрати
, розв’язок
буде лінійно незалежним відносно
:
Загальний інтеграл диференціального рівняння (12.38) у разі кратних коренів має вигляд
(12.43)
Приклад 1. Розв’язати рівняння:
а) б)
в)
У прикладі а) характеристичне рівняння має вигляд або
Звідси маємо
(випадок1).
Згідно з формулою (12.40) загальним розв’язком рівняння буде функція .
У прикладі б) запишемо характеристичне рівняння Його корені – комплексно спряжені числа:
(випадок 2). При цьому
Загальний розв’язок рівняння згідно з формулою (12.41) буде
У прикладі в) корені і
характеристичного рівняння
збігаються:
Загальний розв’язок згідно з формулою (12.43) має вигляд
Приклад 2. Матеріальна точка маси рухається прямолінійно, притягуючись до нерухомого центра
силою, пропорційною відстані від точки до цього центра. Знайти закон руху точки.
Р о з в ‘ я з о к. Згідно з умовою сила, з якою притягується точка, подається у вигляді
, де
- коефіцієнт пропорційності,
- відстань від точки до центра. За допомогою другого закону Ньютона запишемо рівняння руху точки (
- час)
.
Це однорідне диференціальне рівняння другого порядку з постійними коефіцієнтами. Для зручності подамо його у вигляді
(12.44)
Цьому диференціальному рівнянню відповідає таке характеристичне рівняння
причому Корені
та
- комплексно спряжені числа
Отже, загальний розв’язок рівняння (12.68) має вигляд
(12.45)
Знайдемо частинний розв’язок рівняння (12.44), який задовольняє початковим умовам .
Інші реферати на тему «Математика»:
Функціональний ряд, область його збіжності. Cтепеневі ряди. Теорема Абеля
Неперервність функції в точці і в області.Дії над неперервними функціями
Основні властивості означеного інтеграла. Формула Ньютона- Лейбніца
Лінійна однорідна система з постійними коефіцієнтами. Застосування теорії диференціальних рівнянь в економіці
Інтегрування з допомогою заміни змінної. Інтегрування частинами