Сторінка
4
Методом Остроградського можна користуватися в разі інтегрування правильного раціонального дробу, знаменник якого має кратні корені
(дійсні або комплексні ).
У результаті інтегрування виділяється правильний раціональний дріб і новий інтеграл, знаменник підінтегрального виразу якого має лише прості корені. Ця обставина дозволяє дуже легко знайти невідомі коефіцієнти в чисельниках підінтегральної функції після її розкладу на прості дроби, не вдаючись до розв’язування системи рівнянь, якій задовольняють невідомі коефіцієнти розкладу.
Інші реферати на тему «Математика»:
Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)
Синтез систем по оптимізації їх керованості
Маса лінії. Координати центра ваги плоскої кривої та фігури
Інтерполяція
Монотонність функції, необхідні і достатні умови. Eкстремум функції однієї та декількох змінних