Сторінка
2

Первісна функція і неозначений інтеграл. Основні властивості неозначеного інтеграла.Таблиця основних інтегралів

не є елементарними функціями, тобто не можуть бути виражені ніякими скінченими комбінаціями всіх елементарних функцій і скінченою кількістю елементарних операцій над ними .

Так, наприклад, та із первісних яка перетворюється в нуль при називається функцією Лапласа і позначається Ця функція добре вивчена і для неї складені таблиці її значень при різних значеннях

Та із первісних яка перетворюється в нуль при називається еліптичним інтегралом і позначається

Для цієї функції також складені таблиці значень при різних значеннях

1.2.Таблиця основних інтегралів

1. .

2. .

3. .

4. .

5.

6.

7. .

8.

9. .

10. .

11. .

12. .

13. .

14. .

15.

16.

17.

18.

19. .

20. .

21. .

22. .

23.

Справедливість написаних в таблиці рівностей перевіряється диференціюванням (похідна від правої частини дорівнює підінтегральній функції).

Пряме виведення деяких формул може бути здійснене після розгляду методів інтегрування різноманітних функцій .

3.3. Найпростіші правила інтегрування

10. Похідна від невизначеного інтеграла дорівнює підінтегральній функції

Ця рівність випливає безпосередньо із означення невизначеного інтеграла.

20. Диференціал від невизначеного інтеграла дорівнює підінтегральному виразу

Ця рівність отримується на основі властивості 20.

30.

Цю рівність легко перевірити диференціюванням.

40. Постійний множник можна виносити за знак інтеграла

- константа .

50. Інтеграл алгебраїчної суми функцій дорівнює алгебраїчній сумі інтегралів з окремих доданків :

60. Якщо то

- довільні константи.

Цей результат випливає з наступних міркувань. Нехай для функції первісною буде тобто .

Якщо ж , то

Тому або

.

Приклад.

Перейти на сторінку номер:
 1  2 


Інші реферати на тему «Математика»: