Сторінка
4
Наслідок 1. Члени послідовності яка має границю, починаючи з певного номера, мають знак цієї границі.
Наслідок 2.Якщо дві послідовності і
при кожному значенні
задовольняють нерівності
і
то
Зауваження .Якщо члени послідовностей і
що мають границі, задовольняють при всіх
нерівності
то
Теорема 4.Нехай члени послідовностей ,
,
при всіх значеннях
задовольняють нерівності
і
Тоді
4. Нескінченно малі та нескінченно великі числові послідовності
Введемо поняття нескінченно малих та нескінченно великих послідовностей і встановимо зв’язок між ними.
Означення.Числова послідовність називається нескінченно малою, якщо
(5.5)
що те саме при
Означення. Числова послідовність називається нескінченно великою, якщо
(5.6)
Цей вираз записують так:
Теорема 1.Якщо послідовність нескінченно мала і
при всіх
то послідовність
- нескінченно велика. Якщо послідовність
нескінченно велика і
при всіх
то послідовність
- нескінченно мала.
Теорема 1.Для того щоб послідовність мала границю, яка б дорівнювала
необхідно і достатньо, щоб існувала така нескінченно мала послідовність
що
(5.7)
Зауваження.Розглянемо арифметичні операції над числовими послідовностями: додавання, віднімання, множення та ділення.
Нехай маємо дві послідовності :
(5.8)
та
(5.9)
Тоді додавання, віднімання та множення послідовностей (5.8), (5.9) виконуються додаванням, відніманням чи множенням відповідних членів цих послідовностей.
Якщо всі
то частка від ділення послідовності (5.8) на послідовність (5.9) визначається як послідовність
члени якої
Символічно ці дії познаються так:
Теорема 2. Алгебраїчна сума двох нескінченно малих є нескінченно мала.
Наслідок 1.Алгебраїчна сума скінченої множини нескінченно малих є нескінченно мала.
Теорема 2.Добуток нескінченно малої числової послідовності на послідовність обмежену є нескінченно мала числова послідовність.
Наслідок 2. Добуток сталої величини на нескінченно малу числову послідовність є нескінченно мала числова послідовність.
Наслідок 3.Добуток скінченого числа нескінченно малих числових послідовностей є нескінченно мала числова послідовність.
5. Основні теореми про границі
Наведемо теореми, якими користуються для знаходження границі числових послідовностей.
Інші реферати на тему «Математика»:
Розклад функцій в степеневий ряд. Достатні умовирозкладу в ряд Тейлора. Застосування степеневих рядів до наближеного обчислення
Зведення визначників до визначника Вандермонда
Теореми Ролля, Лагранжа, Коші. Правило Лопіталя. Формула Тейлора для функції однієї та двох змінних
Інтегрування виразів, що містять тригонометричні функції. Приклади первісних, що не є елементарними функціями. Використання таблиць неозначених інтегралів
Похідна за напрямком і градієнт функції, основні властивості