Сторінка
7
4) то функція називається не зростаючою на проміжку
Зростаючі, неспадні, спадні та незростаючі функції називаються монотонними.
Приклад.
1.
Якщо то тому функція є зростаючою в інтервалі
2. . Якщо то Тому функція є спадна в інтервалі .
Парні та непарні функції. Нехай функція задана на проміжку , який є симетричним відносно початку координат. Це може бути:
Функція на проміжку називається:
1) парною, якщо справджується рівність
2) непарною, якщо справджується рівність
Зауваження. Графік парної функції симетричний відносно осі ординат, а графік непарної функції симетричний відносно початку координат.
Періодичні функції. Функція ,
називається періодичною, якщо існує число , таке, що справджується рівність
.
Число при цьому називається періодом функції .
5.3. Поняття неявної, складної та оберненої функції
5.3.1. Неявна функція
Функція від аргументу називається неявною, якщо вона задана рівнянням
(5.1)
Можливі випадки:
1) рівняння (5.1) не задовольняється жодною парою чисел
, тому вона не задає ніякої функції;
2) рівняння (5.1) задовольняється лише однією парою чисел
(), тому воно не задає ніякої залежності;
3) рівняння (5.1) задовольняється різними парами чисел
, тому воно задає змінну як функцію від : .
Множина значень , для кожного з яких , є областю визначення неявної функції . Наприклад, рівняння задає двозначну функцію :
; .
Нехай тепер маємо рівняння
, (5.2)
що зв’язує значення трьох змінних. Розглянемо множину тих пар чисел , для яких існує значення , що разом з і рівняння (5.2) перетворює на тотожність.
Якщо кожній парі чисел із вказаної множини поставити у відповідність значення , одержимо однозначну або багатозначну функцію двох змінних: , яку будемо називати неявно заданою рівнянням (5.2) або неявною функцією.
Розглянемо рівняння , яке зв’язує значення змінних, за аналогією із викладеним, можна ввести
поняття неявної функції від змінної.
5.3.2. Складна функція
Розглянемо спочатку функції однієї змінної.
Нехай задані дві функції і , при цьому множина значень першої функції входить в область означення другої. Тоді кожному значенню із області визначення функції відповідає певне значення змінної , а значенню функція ставить у відповідність певне значення змінної , тобто змінна є функцією : .
Інші реферати на тему «Математика»:
Синтез систем по оптимізації їх керованості
Інтегрування виразів, що містять тригонометричні функції. Приклади первісних, що не є елементарними функціями. Використання таблиць неозначених інтегралів
Основні означення та факти з теорії визначників
Лінійні неоднорідні диференціальні рівняння з постійними коефіцієнтами та правою частиною спеціального вигляду
Основні поняття математичного програмування. Побудова моделі задачі лінійного програмування