Сторінка
3
Поняття ”математична задача” розглядалося в працях Г.А.Балла, Г.П.Бевза, Є.С. Березанської, М.В.Богдановича, П.М.Ерднієва, Ю.М.Колягіна, Л.М.Фрідмана та ін. Серед математичних задач в окрему групу виділяються текстові. До текстових відносимо задачі, в яких описується кількісна або якісна сторона реальних процесів, явищ чи ситуацій та міститься вимога знайти шукану величину, що знаходиться у зв’язку із даними в задачі величинами.
У загальній системі навчання математики „розв'язування задач є одним з видів ефективних вправ. Розв'язування задач має дуже велике значення насамперед для формування в дітей повноцінних математичних понять, для засвоєння ними теоретичних знань, визначених програмою”. Так, якщо хочемо сформувати в школярів правильне поняття про дію додавання, необхідно, щоб діти розв'язали достатню кількість простих задач на знаходження суми, виконуючи щоразу операцію об'єднання множин.
Отже, задачі є тим конкретним матеріалом, за допомогою якого в дітей формуються нові знання і закріплюються в процесі застосування вже здобуті знання. Виступаючи в ролі конкретного матеріалу для формування знань, задачі дають можливість пов'язати теорію з практикою, навчання з життям. Розв'язування задач формує в дітей практичні вміння, потрібні кожній людині в повсякденному житті. Наприклад, обчислити вартість покупки, ремонту квартири; визначити, о котрій годині треба вийти, щоб не запізнитись на поїзд, тощо.
Використання „задач як конкретної основи для ознайомлення з новими знаннями і застосування вже здобутих дітьми знань відіграє дуже важливу роль у формуванні в них елементів світогляду” . Розв'язуючи задачі, учень упевнюється в тому, що багато математичних понять (число, арифметичні дії тощо) випливають з реального життя, з практики людей. Через розв'язування задач діти ознайомлюються з важливими фактами, які мають пізнавальне і виховне значення. Так, зміст багатьох задач, які розв'язують у початкових класах, відображає працю дітей і дорослих, досягнення нашої країни в галузі народного господарства, техніки, науки, культури.
Задачі є „і предметом і засобом навчання. Вони є основним засобом забезпечення зв'язку навчання із життям, політехнічного направлення в навчанні, здійснення міжпредметних зв'язків всередині математики і останньої з іншими навчальними предметами”. На уроках математики навчальний процес в більшості випадків слідує від задач до теорії, а потім від теорії до задач: задачі => теорія => задачі.
Задача – це «сформульоване запитання, відповідь на яке можна знайти за допомогою арифметичних дій». З визначення задачі випливає, що в ній обов’язково має міститись якесь запитання. Без запитання задачі немає. Оскільки відповідь на запитання задачі дістаємо в результаті виконання арифметичних дій, очевидно, в ній повинна міститися вимога визначити те чи інше число (або числа) – шукане і, крім того, повинні вказуватися ті числа, за допомогою дій над якими можна знайти шукане. Тому обов’язковими елементами будь-якої арифметичної задачі є невідоме (шукане) число (чи кілька таких) і дані числа.
В навчанні математиці виділяють найбільш важливі функції задач: навчальні, виховні, розвиваючі, контролюючі.
Навчальні функції спрямовані на формування у школярів системи математичних знань, умінь і навичок (як передбачених програмою, так і таких, що розширяють, поглиблюють її зміст) на різних етапах навчання.
Виховні функції спрямовані на формування пізнавального інтересу, самостійності, навичок навчальної праці, культури математичної мови, графічної культури.
Розвиваючі функції спрямовані на розвиток мислення в учнів, просторових уявлень, на оволодіння ними ефективними прийомами розумової діяльності.
Контролюючі функції спрямовані на встановлення рівня навчання, здібності до самостійного вивчення матеріалу, рівня математичного розвитку учнів і сформованості пізнавальних інтересів.
У зв'язку з великою кількістю видів математичних задач розглянемо існуючі їх класифікації. Зокрема, у методичній літературі можна знайти наступні класифікації.
1. За кількістю невідомих у структурі задач. Ю.М.Колягін пропонує їх класифікувати на навчальні, пошукові та проблемні.
2. За характером об'єктів задачі поділяють на практичні та математичні.
3. За відношенням до теорії виділяють стандартні та нестандартні задачі. У ролі основної ознаки стандартних задач вказано наявність у курсі математики таких загальних правил і положень, що однозначно визначають програму розв'язання цих задач та виконання кожного кроку цієї програми (тобто мають свій алгоритм розв'язування). Нестандартні задачі - це такі, для яких у курсі математики не існує загальних правил або положень, що визначають точну програму їх розв'язання.
4. За функціями у процесі навчання розрізняють дидактичні, пізнавальні та розвиваючі задачі. Задачі з дидактичними функціями використовують для підготовки учнів до введення нового матеріалу, а також при його закріпленні: вони несуть функцію застосування теорії, що вивчається. Задачі з пізнавальними функціями мають за мету відпрацювати та поглибити основний зміст математичної дисципліни. Задачі з розвиваючими функціями – це ті, розв'язування яких потребує певних знань та вмінь, не передбачених програмою. Саме ці задачі спрямовані на розвиток мислення.
5. Задачі, що стимулюють навчально-пізнавальну діяльність; організують та здійснюють навчально-пізнавальну діяльність учнів; задачі, у процесі виконання яких здійснюється контроль та самоконтроль ефективності навчально-пізнавальної діяльності.
6. Задачі для початкової школи класифікують за змістом: задачі на рух, задачі на пропорційне ділення, на знаходження четвертого пропорційного.
7. За характером вимоги у початковому курсі математики виділяють задачі на обчислення, задачі на побудову, задачі текстові, задачі комбінованого характеру.
Наведені класифікації дозволяють ширше уявити собі проблеми, пов'язані з методикою навчання молодших школярів розв'язувати задачі, спрямовуючи цей процес на розвиток мислення.
Загалом задачі у початковому курсі математики класифікують на прості і складені. При цьому до простих належать 25 видів задач (на розкриття змісту арифметичних дій; на розкриття відношень між числами; задачі, що розкривають зв’язки між компонентами і результатами арифметичних дій; задачі на збільшення (або зменшення) числа на кілька одиниць (чи в кілька разів) та ін.).
Прості задачі часто використовуються початковому курсі математики і при ознайомленні учнів з іншими сюжетами задач у справі формування в дітей уявлень про величини, їх вимірювання, про зв’язки, які існують між такими величинами, як ціна, кількість і вартість; маса одного предмета, число предметів і загальна маса; швидкість, час і пройдений шлях; довжина і ширина прямокутника та його площа; норма виробітку за одиницю часу, затрачений час і загальний виробіток, норма витрати яких-небудь матеріалів на один виріб, число виробів і загальна витрата матеріалів на них тощо. Такі задачі розглядаються в 1-4 класах поступово, в міру розширення кола величин, що вводяться у зв’язку з вивченням відповідних питань і на матеріалі інших вправ.