Сторінка
7
Складені задачі дають можливість продовжити і розширити та поглибити роботу, спрямовану на ознайомлення дітей з різними величинами і залежністю між ними. Група складених задач, пов’язаних з необхідністю застосувати знання зв’язку між такими величинами, як ціна, кількість, вартість, займає важливе місце в підручниках для всіх чотирьох класів.
Застосовуючи до складених сюжетних задач алгебраїчний метод розв'язування, можна поділити їх на дві категорії. Поділ сюжетних задач на дві категорії надто широкий, але в ньому є певний практичний сенс. До першої групи віднесемо задачі на 2 дії, а до другої — на 3 і 4 дії. Такий поділ пояснюється тим, що вироблення вмінь розв'язувати задачі на 3 і більше дій спирається не тільки на знання видів простих задач і залежностей між величинами, а й на вміння учнів розв'язувати задачі на 2 дії. Часто задачі на 2 дії є «блоками», з яких складається розв'язування задач на 3 і більше дій.
Складені задачі поділяють за кількістю дій, якою розв’язується та чи інша задача. Це задача на дві, три, чотири дії. Трьома діями розв’язуються задачі, які утворилися розширенням задач на дві дії; також до цього типу належать також задачі на знаходження суми двох добутків, різниці двох добутків, різниці двох часток і т. ін.
Формування поняття про складену задачу та ознайомлення з процесом розв’язування складених задач здійснюється за допомогою порівняння задачі з двома запитаннями та відповідної складеної задачі; порівняння простої та складеної задач, які мають однакові умови; вибору необхідних і достатніх ознак для розпізнавання складеної задачі; підведення під поняття “складена задача”; виведення наслідків про належність або неналежність задачі до поняття “складена задача”.
Спеціально опрацьовується уміння виконувати аналітичний пошук розв’язування задачі – спочатку до задач подаються готові схеми аналізу, потім – діти повинні самостійно заповнити схему аналізу на картці з друкованою основою, а далі складають її самі. Аналогічно формується вміння розбивати складену задачу на прості та визначати порядок розв’язування простих задач.
Істотним в організації діяльності учнів на етапі ознайомлення з поняттям “складена задача” є її спрямованість не на розв’язання кожної конкретної задачі, а на оволодіння комплексом умінь, на оволодіння цим поняттям.
На підставі визначених теоретичних основ нами удосконалена методика формування загального уміння розв’язувати складені задачі, в якій визначено мету і зміст кожного з зазначених етапів. На відміну від чинних підручників, ми пропонуємо проводити цілеспрямовану підготовку до введення поняття про складену задачу. На етапі підготовчої роботи засобом спеціальних завдань у дітей формуються уявлення: про те, що за двома певними числовими даними можна відповісти на кілька запитань; різні задачі можуть мати однакові розв’язання; неможливість відповісти на запитання задачі, якщо числових даних бракує; про необхідність вибору числових даних для відповіді на запитання задачі; про існування задач, на запитання яких не можна відповісти одразу; про існування задач, що складаються з двох простих задач, які пов’язані за змістом; про те, що аналіз може складатися з двох циклів – кожний з яких відповідає певній з двох простих задач .
Формування загального вміння розв’язувати складені задачі реалізується за допомогою систем навчальних задач для 2 класу. Навчання розв’язувати складені задачі доцільно здійснювати на різноманітних математичних структурах задач, не зосереджуючись на відпрацюванні розв’язання задачі певної структури. Істотним у методиці ознайомлення із задачами нової математичної структури є введення їх на основі або порівняння зі схожими простими задачами, або на основі продовження сюжету простої задачі, або на основі зміни запитання простої задачі до даної умови, або на основі зміни умови або запитання складеної задачі відомої математичної структури.
Таким чином, „досліджується вплив цих змін на розв’язування задачі; задачі нової математичної структури зіставляються з задачами вже відомими, що полегшує їх засвоєння. Крім того, застосовується й такий методичний прийом, коли задача нової структури подається без зіставлення з відомими структурами, що спонукає відтворення повного складу дій, які містить загальне уміння розв’язувати складені задачі” .
При формуванні вміння розв’язувати складені задачі в 2-му класі учням пропонуються складені задачі різноманітних математичних структур.
Наведемо систему задач, з якими учні ознайомлюються у 2 класі.
1. Задачі на знаходження невідомого зменшуваного.
2. Задачі на дві дії (поняття про складену задачу).
3. Складені задачі, які містять відношення "більше на".
4. Складені задачі, які містять відношення "менше на".
5. Задачі на знаходження третього доданка за сумою і двома відомими доданками.
6. Задачі на знаходження невідомого від'ємника.
7. Задачі на знаходження числа, яке задане подвійним різницевим відношенням.
8. Задачі на знаходження числа, яке на кілька одиниць більше (менше) від суми двох чисел.
Формування й розвиток умінь в учнів 2 класу розв'язувати складені задачі забезпечуються дотриманням загальних методичних вимог у роботі над задачами, а також деякими спеціальними прийомами, що конкретизують і доповнюють загальнометодичні настанови.
Уміння розв'язувати задачу передбачає знання тих загальних правил, які сприяють раціональному підходу до пошуків розв'язання. У широкому розумінні розв'язування задачі розпочинається зі збирання необхідної інформації. Вивчають задачну ситуацію, запитання задачі, згадують або знаходять з певних джерел ті ознаки й властивості величин, про які йдеться в задачі. Потім з'ясовують залежності між даними і шуканими величинами, ознаки і властивості, які слід використовувати для знаходження відповіді на запитання. На основі цього визначають хід розв'язування. Це конструктивна (і основна) частина роботи над задачею. Друга частина — виконавча, коли роблять необхідні записи; визначають дії чи складають вираз або рівняння; здійснюють обчислення і записи відповіді; перевіряють розв'язання.
У навчанні учнів початкових класів цей порядок роботи подається у вигляді порад, що формулюються в інструкції (пам'ятці). Дає позитивні результати така система порад:
а) уважно прочитай задачу; подумай, про що йдеться в ній; з'ясуй незрозумілі слова і вирази; виділи в задачі умову і запитання;
б) подумай, що означає кожне число; який зв'язок між числами;
в) ця задача проста чи складена? Якщо складена, то спробуй розробити план розв'язування;
г) якщо план не вдалося відразу скласти, то пригадай, яку подібну задачу розв'язували раніше; розв'яжи частину задачі; чи не можна тепер знайти відповідь на основне запитання?.
У формуванні вмінь розв'язувати задачі велике значення мають і деякі спеціальні заходи навчального та виховного характеру. Дітей необхідно орієнтувати на таку настанову: над розв'язуванням задачі треба думати, оскільки прийоми знаходження відповіді невідомі, їх потрібно знайти. Тому при опрацюванні умови учнів не слід "підганяти", вони мусять мати час на обмірковування.