Сторінка
2
Слід зазначити, що виникнення різних, інколи протилежних напрямів у науці при розв'язанні складних фундаментальних проблем і гострих дискусій між їхніми прихильниками — цілком нормальне явище. На жаль, гострота полеміки змушує протиборствуючі сторони
повністю відкидати концепції, що протистоять їм. Проте тільки подальші дослідження можуть показати, яка точка зору ближча до істини. І дискусія про шляхи еволюційних процесів у Всесвіті не є винятком. До того ж не виключено, що в нескінченній різноманітності Всесвіту за одних умов формування нових космічних об'єктів може відбуватися конденсаційним шляхом, а за інших — бути наслідком розпаду.
Як було вже сказано, основна частина життя переважної більшості зір — це період, коли в їхніх надрах відбувається термоядерна реакція синтезу більш важких елементів з більш легких. На цьому етапі рівновага зорі підтримується рівновагою між тиском розпеченого газу в її надрах, який прагне розширити зорю, і силами тяжіння, що прагнуть її стиснути.
При цьому, якщо термоядерні реакції в надрах зорі чомусь прискорюються^ надходження тепла з її глибин до поверхні перевищує тепловіддачу в світовий простір, то температура в надрах зорі підвищується, тиск газу зростає і зоря починає розширятися. Центральна зона охолоджується, і термоядерна реакція приходить до норми. Навпаки, якщо тепловіддача в навколишній простір виявляється вищою, ніж енерговиділення, то зоря починає охолоджуватись, тиск у її надрах падав і сили тяжіння починають стискати зорю. Завдяки цьому надра зорі розігріваються, термоядерна реакція прискорюється і теплова рівновага, а водночас і баланс сил усередині зорі приходять до норми. Отже, зорі — це саморегульовані системи, створені самою природою.
Новий, по суті заключний, період в існуванні зорі настає тоді, коли її основне ядерне паливо — водень повністю вичерпується. У процесі термоядерної реакції в центральній частині зорі утворюється гелієве ядро. Потім це ядро починає стискатися, а зовнішні шари — оболонка зорі — розширятися. Зоря переходить у стадію
червоного гіганта. У її надрах в міру дальшого стискання одні термоядерні реакції заступають інші за участю дедалі важчих елементів. І відбувається це доти, доки не будуть вичерпані всі термоядерні джерела енергії.
Подальша доля вмираючої зорі залежить від її маси. Зорі, маса яких близька до сонячної або трохи перевищує її, перетворюються у так звані білі карлики, тобто в зорі з радіусами в сотні разів меншими від радіуса Сонця. Густина речовини таких зір набагато перевищує густину сонячної речовини. У кожному кубічному сантиметрі простору білих карликів вміщуються десятки й сотні тонн речовини.
Білий карлик — стале утворення. Його рівновага підтримується, проте, внутрішнім тиском не звичайного, а електронного газу, який утворений великою кількістю вільних електронів. Густина цього газу цілком достатня для того, щоб припинити гравітаційне стискання зорі. В такому ґаві істотно проявляються квантові ефекти, і фізики навивають його «виродженим». З цієї причини і білих карликів нерідко навивають «виродженими зорями».
Температура поверхні найбільш гарячих вироджених карликів може досягати 50—100 тис. кельвінів. Під тонкою атмосферою такої зорі розташована щільна маса, що мав до самого центра однакову температуру. Втрати енергії на випромінювання у білих карликів порівняно невеликі, тому такі зорі охолоджуються надзвичайно повільно.
Типовим прикладом виродженого карлика е супутник найяскравішої зорі земного неба — Сіріуса — Сіріус В. До речі, Сіріус В став першим представником класу вироджених зір, виявленим астрономами .
Отже, зорі з масою, що не перевершує 1,4 маси Сонця, після вигоряння водню перетворюються на білих карликів. Якщо ж маса зорі, яка завершує свій життєвий шлях, більша за 1,4 маси Сонця, то стиснення на стадії виродженого карлика не зупиняється, під дією сил тяжіння воно триває далі. Виникає так званий гравітаційний колапс — невтримне падіння речовини зорі до її центра.
На цьому етапі може статися потужний вибух зорі — вже відомий нам спалах наднової. При цьому залишок зорі, що вибухнула, може утворити об'єкт, у надрах якого під дією колосального тиску електрони виявляться «вдрукованими» у протони. Протони перетворяться у нейтрони.
Нейтронна зоря — компактне, надзвичайно щільне тіло діаметром усього близько 15—20 км. Середня густина речовини таких зір досягає дивовижної величини — 10м грамів у кубічному сантиметрі. Це густина ядерної речовини. Нейтронна зоря — це ніби збільшене в багато разів атомне ядро.
Цікаво, що існування нейтронних зір було теоретично передбачене ще в довоєнні роки видатним радянським ученим академіком Л. Д. Ландау. Але виявити їх удалося тільки в 1967 р. за незвичним імпульсним випромінюванням.
З'ясувалося, що генераторами цього випромінювання є нейтронні зорі, які швидко обертаються. Якщо нейтронна зоря випромінює в радіодіапазоні, то породжений нею радіопромінь описуватиме періодичні кола в просторі, наче промінь маяка, що обертається. І кожне проходження такого променя через антену радіотелескопа буде зареєстровано як окремий імпульс .
Повернемося, проте, до еволюції вмираючої зорі. У тих випадках, коли маса нейтронного задишка перевищує 3—4 маси Сонця, теорія стверджує, що гравітаційне стиснення повинне тривати далі. І в результаті колапсу утворюється чорна діра.
Методичні міркування. Тепер відомо кілька космічних об'єктів, які здогадне ототожнюються з чорними дірами подібного типу. Однак повної впевненості в цьому поки що немає, оскільки фізичні явища, пов'язані з «підозрюваними» об'єктами, можуть мати й інші пояснення. На думку деяких учених, утворення чорних дір внаслідок вмирання масивних зір, якщо й відбувається, то в усякому разі досить рідко.
«Зоря,— пише академік В. Л. Гінзбург,— може закінчити свій життєвий шлях одним з чотирьох способів: вибухнути до останку, перетворитися у білий карлик або у нейтронну зорю і, нарешті, стати чорною дірою. Можливо, і деякі відомі з літератури розрахунки підкріплюють це припущення, що кінцевий стан у формі чврної діри досягається лише за рідким збігом умов і параметрів» '.
Спалах наднової. Серед явищ, що відбуваються у зоряних світах, одним з найграндіозніших є так звані спалахи наднових зір.
Згідно з сучасними теоретичними уявленнями подібні спалахи виникають на завершальному етапі існування досить масивної зорі при переході від стадії білого карлика до стадії нейтронної зорі чи чорної діри.
У 1758 році французький астроном Шарль Мессье, що займався пошуками комет, виявив у сузір'ї Тельця туманну світну пляму, яку він прийняв за невідому комету. Однак пізніше з'ясувалося, що на відміну од комет, які переміщуються серед зір, ця туманність продовжує залишатися на одному і тому самому місці. З появою більш потужних телескопів вдалося роздивитись її детальніше. Виявилося, що туманність має досить чудернацьку форму, яка чимось нагадує гігантського фантастичного краба з численними клешнями. У зв'язку з цим туманність дістала назву Крабовидної.