Сторінка
2
Із наведених рівнянь випливає, що на кожний моль суперфосфату припадає 2 моля фосфогіпсу, відтак на 1t суперфосфату вихід гіпсу становить:
40 + 2 × (2 + 31 + 4 × 16) = 234 — 2 × (40 + 32 + 4 × 16) = 272
1 t суперфосфату — х
гіпсу.
Виробництво суперфосфату в деякі роки на Україні становило близько 10 млн t. Отже, багатомільйонні відходи гіпсу, насичені сірчаною кислотою, ставлять складну екологічну проблему перед сучасним виробництвом фосфорних добрив.
Друге, надзвичайно важливе виробництво добрив — азотно-тукове, в основі якого лежить перша стадія процесу «зв’язування» атмосферного азоту в аміак. Хімічна реакція цього процесу на вигляд надзвичайно проста N2 + 3H2 2NH3 + 92 kJ, але саме вона є прикладом того, як людство завдяки науковому пошуку вирішує сучасні глобальні проблеми.
До початку першої світової війни основним азотним добривом була натрієва селітра (NаNО3), природні поклади якої є обмеженими. Основну масу натрієвої селітри завозили у Європу з Південної Америки, з Чилі, завдяки чому вона більш відома під назвою «чилійська селітра». Звичайно, доставка селітри з-за океану збільшувала її ціну, що негативно впливало на рівень економічної ефективності її застосування в сільському господарстві та промисловості. Додамо, що в ті часи натрієва селітра широко застосовувалась для виробництва азотної кислоти (за реакцією NаNО3 + H2SO4 = 2HNO3 + Na2SO4), яка, у свою чергу, використовувалась у процесі виготовлення пороху й вибухівки.
У великій кількості ще в минулому сторіччі азотовмісну речовину, яку можна було використати як добриво чи вихідний напівпродукт у хімічному виробництві, отримували за коксування вугілля. Кам’яне вугілля містить до 2% азоту й кілька відсотків водню. У процесі коксування вугілля ці елементи поєднуються в сполуку NН3 — аміак і її похідну — солі амонію (N), наприклад (NН4)2SO4. Відокремлення аміаку й солей амонію від інших продуктів коксування досягається пропусканням коксового газу через воду. Така вода одержала назву «аміачна вода» і знайшла застосування як перше азотне добриво хімічного виробництва. Нагріванням аміачної води з вапном аміак можна було виділити в чистому вигляді як газ, що й було єдиним промисловим методом його одержання до початку ХХ ст.
Обмежені запаси природної селітри й незначні потужності аміачного виробництва коксохімічної технології спонукали науковців і виробничників до інтенсивних пошуків економічно ефективніших промислових методів одержання аміаку, який уже був відомий як хімічно активна і зручна сполука для її використання в різних хімічних процесах виробництва добрив, барвників і військової продукції (пороху, динаміту, тринітротолуолу).
Початок першої світової війни значно загострив потреби в азотній кислоті, яка була особливо необхідною Німеччині, блокованій Антантою. Німецькі хіміки Фріц Габер і Карл Бош завершили багаторічні пошуки видатних хіміків свого часу — здійснили синтез аміаку за тією простою реакцією, з якої ми почали цю тему. Але це не було просто. Треба було визначити термодинамічні умови перебігу реакції і знайти відповідні параметри процесу і каталізатори.
Свідченням значення цього видатного науково-технічного досягнення для прогресу цивілізації є визнання його вченим світом — Ф. Габер і К. Бош були удостоєні Нобелівської премії. Принципи технології синтезу аміаку, розроблені цими вченими, не змінилися до нашого часу в системі технологій отримання азотних добрив й описані в кожному підручнику з хімії. Значно змінилися апаратурне оформлення і параметри процесу.
У сучасному технологічному процесі синтезу аміаку найчастіше тиск у системі підтримують близьким до 30 МРа, а температуру 400 … 500°С. У зв’язку з високими тиском і температурою конструювання й виготовлення апарата синтезу аміаку становить складну проблему.
Перші апарати — колони синтезу виготовляли із стальних заготовок у Німеччині після першої світової війни на військових заводах Круппа за такою технологією, як і для крупнокаліберних гарматних стволів. З часом розміри колон збільшувались і змінювалась технологія їх виготовлення. Сучасна колона синтезу — це великогабаритний апарат каталітичного синтезу аміаку безперервної дії (рис. 62). Унизу до колони надходить азотно-воднева суміш, а згори виходять продукти реакції — аміак (близько 20%) і вихідні реагенти (Н2 і N2), які не прореагували. Після відокремлення аміаку водень і азот знову повертаються в колону синтезу.
Технічна характеристика Виробництво за добу, t . 1360 Внутрішній діаметр, мм: корпусу колони 2400 теплообмінника 1000 Робочий тиск, kgs/sm2 32 Максимально допустима температура стінки корпусу, °С 250 Внутрішній об’єм корпусу, м2 . 96,6 Загальна висота колони, мм 31450 Маса оснащеної колони, t 510 Колона синтезу аміаку: 1 — теплообмінник; 2 — верхнє днище колони; 3 — рулоновані блоки центральної обичайки корпусу; 4 — внутрішня насадка з каталізатором; 5 — нижнє днище колони; 6 — вхідний штуцер; 7 — вихідний штуцер Рис. 62. Колона синтезу аміаку |
|
Інші реферати на тему «Технічні науки»:
Проект відділення обробки щитових заготовок на виготовлення шафи для посуду
Охорона праці та техніка безпеки при ремонті та обслуговуванні автомобілів. Основні небезпечні та шкідливі фактори при ремонті та обслуговуванні автомобілів
Акрилове нарощування нігтів у технологічній послідовності
Організація сушильного господарства на заводі (сушіння деревини)
Класифікація, техніко-економічні та екологічні характеристики сировини