Сторінка
1
Для рівняння загальний розв’язок (можна перевірити підстановкою). Таким чином хвиля розповсюджується в багатьох напрямках:
- хвиля в напрямку .
- хвиля в напрямку .
Задача: Нехай хвиля падає під кутом до поверхні середовища, знайти характеристики відбитої хвилі та заломленої.
Розв’язок: Вважаємо, що . Раніше ми показали, що розв’язком рівнянь Максвела є узагальнене рівняння хвилі. Тоді для даних хвиль:
( ми розглянули плоску задачу в ).
Гранична умова: . Тоді , де ; ; ; коефіцієнти не повинні залежати від . В цьому випадку (*). Тоді (**).
Виходячи з (*), маємо . (очевидно якщо відкласти відрізки на малюнку). Аналогічно .
- перший закон Смеліуса.
- другий закон Смеліуса.
Наближені граничні умови Леонтовича.
Розглянемо ідеальну металеву поверхню. Для неї граничні умови: ; . Однак, тут - не враховувалися втрати в металі. Їх врахував Леонтович:
1. Нехай хвиля падає під кутом до поверхні. Леонтович вважав, що якби хвиля не падала, вона йде нормально до поверхні. Це можна пояснити тим, що в металі , тому кут заломлення дуже малий: . Це наближена умова.
2. Леонтович вважав, що в металі розповсюджується звичайна електромагнітна хвиля, в якій , де . Ця рівність зберігається і на межі металу. У вакуумі , при цьому ; . Це і є наближена гранична умова.
Відбивання від ідеально провідної границі (метал) ТЕ, ТМ хвилі.
- падаюча хвиля (індекс “п”). Обираємо знак “+” для . Тоді . Сумарне поле над металом
Таким чином, сумарна хвиля розповсюджується в напрямку . Отже в результаті розв’язку рівняння Максвела ми маємо хвилю, що падає, і хвилю, що відбита. Сума цих полів дає нову хвилю, що розповсюджується вздовж і є сумою цих двох хвиль. Падаюча і відбита хвиля називаються парціальними; Сумарна зветься неоднорідною плоскою хвилею. Неоднорідна плоска хвиля теж є розв’язком рівняння Максвела.
Властивості неоднорідної плоскої хвилі:
1. Ця хвиля має поздовжні компоненти полів: якщо з’являється а) - -хвиля (ТЕ); б) - -хвиля (ТМ).
1 2