Сторінка
2

Паскаль:подання чисел та інших значень

2. Внутрішнє подання даних стандартних типів 2.1. Біт, байт та інші У комп'ютері числа зберiгаються та обробляються в двiйковiй системі числення. Двійкова цифра 0 або 1 відображається станом елемента пам'яті, який вважається неподільним і називається бiтом. Послідовність із 8 бітів називається байтом. Байт своїми станами відображає 28=256 комбінацій із 0 та 1, а саме: 00000000 00000001 ¼ 11111110 11111111 Множині цих комбінацій можна взаємно однозначно поставити у відповідність деякі множини значень: цілі числа від -128 до 127, або числа від 0 до 255, або пари 16-кових цифр, або символи від chr(0) до chr(255) чи якісь інші множини з 256 елементів. У двох сусідніх байтах подаються 28× 28=65536 комбінацій із 0 та 1. Їм взаємно однозначно ставляться у відповідність цілі числа від 0 до 65535, або числа від -32768 до 32767 чи інші множини з 65536 елементів. Аналогічно чотири сусідні байти відображають (28)4=4294967296 комбінацій із 0 та 1, яким зiставляються числа від 0 до 4294967295, або числа від -2147483648 до 2147483647 чи інші множини з 4294967296 елементів. Два байти утворюють одиницю пам'яті, яка називається словом. Іноді таке слово називається напівсловом, а словом – послідовність із чотирьох байтів. Послідовність із 1024 байтів утворює одиницю виміру розмірів пам'яті комп'ютера. Цю одиницю позначають Kбайт, проте це "K" – латинська літера, що читається "кей" і позначає не тисячу, а 1024. Послідовність із 1K Kбайтів, тобто 1048576 байтів, називається Mбайтом. Ці дві одиниці у світі програмістів і користувачів часто не зовсім точно називають відповідно "кілобайт" і "мегабайт", хоча це зовсім не тисяча і не мільйон байтів. До речі, 1Гбайт, хоча й читається "гігабайт", позначає не мільярд, а 1073741824 байти. 2.2. Подання цілих чисел, символів та бульових значень Бульовi значення false та true подаються, як правило, в одному байтi комбінаціями відповідно 00000000 та 00000001. Символи від chr(0) до chr(255) зображаються в одному байтi комбінаціями з нулів та одиниць відповідно від 00000000 до 11111111. Наприклад, символ chr(32), або ' ' (пропуск), зображається як 00100000, символ chr(48), або '0', – як 00110000 тощо. Цілі числа подаються в комп'ютері, головним чином, у двох формах – беззнаковій та знаковій. Далі ми будемо ототожнювати числа з їх поданням, усвідомлюючи, що з точки зору математики це не може бути правильним.

       
7 … 0 7 … 0 7 … 0
8N-1 …   15 … 8 7 … 0
Беззнаковi числа займають певну кількість N байтiв, яка задає дiапазон (множину) цих чисел від 0 до 28N-1. Найчастiше N=1, 2 або 4, і діапазони чисел – від 0 до відповідно 255, 65535 та 4294967295. Байти записуються від молодших до старших справа наліво та нумеруються від 0 до N-1. Біти всередині байтiв так само записуються від молодших до старших справа наліво й нумеруються від 0 до 7 (рис. 11.1). Усього в N байтах є 8N бітів, які нумеруються справа наліво від 0 до 8N-1. Біти з номерами 8N-1, ¼ , 8N-8 утворюють старший байт (він ліворуч), а з номерами 7, ¼ , 0 – молодший (праворуч). Комбінація бітів x8N-1, ¼ , x0 зображає в двійковій системі число

x8N-1× 28N-1+¼ x1× 2+x0. Наприклад, комбінація 00¼ 00 задає число 0, комбінація 00¼ 01 – "один", 00¼ 10 – "два", 11¼ 11 – число 28N-1.

Таблиця 11.1

число

код

28N-1 - 1

01¼ 11

28N-1 - 2

01¼ 10

¼

¼

1

00¼ 01

0

00¼ 00

-1

11¼ 11

-2

11¼ 10

¼

¼

-28N-1 + 1

10¼ 01

-28N-1

10¼ 00

Знаковi числа займають ті самі N , тобто 1, 2 або 4 байти. Найстарший біт зображає знак числа: 0 – знак '+', 1 – знак '-'. Додатні числа подаються так само, як i беззнакові, лише за рахунок знакового біта дiапазон їх менший – від 0 до 28N-1-1. За N=1, 2 або 4 це відповідно 127, 32767 та 2147483647. Таке подання називається прямим кодом. Наприклад, прямим кодом максимального цілого є 011¼ 1. Від'ємні числа подаються в коді, названому додатковим. Для від'ємного числа A він позначається D (A) й утворюється так:

1) за прямим кодом числа |A| заміною всіх 0 на 1 та всіх 1 на 0 будується обернений код R(A);

2) за R(A) як беззнаковим цілим числом обчислюється D(A)=R(A)+1. Очевидно, що D(A)=R(|A|-1). Наприклад, побудуємо двобайтовий додатковий код числа –144. Прямим двобайтовим кодом числа 144 буде

0000'0000'1001'0000 (апострофи записано для наочності), оберненим – 1111'1111'0110'1111. До нього додається 1: 1111'1111'0110'1111

1

1111'1111'0111'0000, і ми одержуємо додатковий код числа -144. Він є також оберненим кодом числа -143. За додатковим кодом від'ємне число "відновлюється" у зворотному порядку:

1) D(A) вважається беззнаковим цілим; обчислюється R(A)=D(A)-1;

2) код, обернений до R(A), є прямим кодом числа | A |. Той самий результат можна дістати, якщо

1) побудувати код R(D(A)), обернений до D(A);

2) до R(D(A)) як до беззнакового додати 1. Відповідність знакових цілих чисел та їх кодів наведено в табл. 11.1. Як бачимо, від'ємних чисел на одне більше, ніж додатних. Елемент X довільного типу-переліку подається як беззнакове цiле число ord(X). 2.3. Принципи подання дійсних чисел Дiйснi числа в більшості комп'ютерів подаються в N=4, 6, 8 або 10 байтах, поділених на поля (послідовності бітів):

Перейти на сторінку номер:
 1  2  3  4 


Інші реферати на тему «Інформатика»: