Сторінка
3
Хімічна промисловість випускає два типи каучуків: загального (універсального) і спеціального призначення. Перший тип синтетичних каучуків використовують для масового виробництва таких виробів, для яких найважливішим показником є еластичність, — шини, транспортерні стрічки, взуття, іграшки. Каучуки спеціального призначення ідуть для виготовлення виробів, які, крім еластичності, повинні мати специфічні властивості—стійкість проти дії різних агентів (розчинників, кислот, нафтопродуктів, кисню), тепло- і морозостійкість та інші цінні властивості залежно від умов застосування каучуків. Синтетичні каучуки часто класифікують також за хімічним складом макромолекул: бутадієн-стирольні, ізопренові, бутадієнові та ін. Більшість синтетичних каучуків належить до карболанцюгових полімерів.
Синтетичні каучуки знаходять досить широке застосування. Номенклатура гумових виробів на основі синтетичного каучуку налічує близько 50 000 назв. Найбільше синтетичних каучуків використовує шинна промисловість (більш як ½ загального об'єму використання), машинобудівна (виготовлення деталей для автомобілів, тракторів та інших машин). Широко використовують синтетичні каучуки для виробництва технічних виробів, гумового взуття, прогумованих тканин, побутових гумових виробів, медичних товарів та ін. В електротехніці використовуються каучуки для ізоляції проводів і оболонок кабелів. Рідкі каучуки застосовують для виготовлення клеїв, антикорозійних матеріалів, як зв'язуючу речовину при виготовленні твердого ракетного палива.
Розвиток сучасної реактивної і атомної техніки, застосування атомної енергії в мирних цілях, технічний прогрес у ряді галузей промисловості потребують від промисловості синтетичних каучуків розширення температурних меж використання гумових виробів, підвищення їх стійкості проти дії агресивних середовищ, іонізуючого випромінювання тощо.
Бутадієнові каучуки (СКБ) є продуктами полімеризації бутадієну-1,3 (СН2 = СН—СН = СН2). Бутадієн —це газ з температурою кипіння — 4,5° С. Його можна добути з етилового спирту і продуктів переробки нафти з так званої бутан-бутиленової фракції.
Бутадієн у промисловості добувають з етилового спирту способом С. В. Лебедева:
Реакція відбувається під час пропускання пари етилового спирту в присутності каталізатора — металічного натрію.
Найдешевше і найперспективніше добування бутадієну з газів крекінгу нафти — бутану і бутилену — способом каталітичного дегідрування. Дегідрування бутану відбувається у дві стадії: спочатку утворюються бутилени, а при дальшому дегідруванні бутиленів — бутадієн:
На першій стадії реакція відбувається при температурі 550— 600° С в присутності каталізатора — оксиду хрому, нанесеного на оксид алюмінію. Як активатор застосовують КОН. На другій стадії температура становить 600—650° С, каталізатори — Fe2O3 і Сr203, активатор — К2О. Водень, що виділяється під - час дегідрування бутану, є цінним продуктом для синтезу аміаку.
Бутадієн можна добувати також з ацетилену й оцтового альдегіду.
Полібутадієн добувають способом С. В. Лебедева — полімеризацією бутадієну в присутності металічного натрію як каталізатора, при температурі 40—60° С і тиску 6—8 am. За цим способом натрій-бутадієновий каучук добувають у рідкій або газовій фазі.
Важливого значення в промисловості тепер набуває добування полібутадієну способом радикальної полімеризації бутадієну. Радикальну полімеризацію проводять у присутності пероксидних ініціаторів або діазосполук. Під час полімеризації окремі ланки бутадієну можуть приєднуватися у положенні 1,4 або 1,2:
Виходячи з цього, загальну будову полібутадієну можна подати так:
Молекулярна маса бутадієнового каучуку становить 80 000— 450 000. густина — 0,89—0,92 г/см3. Він розчиняється в аліфатичних і ароматичних вуглеводнях, галогенопохідних вуглеводнів, має високі діелектричні властивості. При звичайній температурі перебуває в аморфному стані.
На відміну від натурального каучуку, натрій-бутадієновий каучук майже не має кристалічної фази, що зв'язано з наявністю відгалужень і неоднорідністю структури макромолекул. Завдяки наявності у каучуку вінільних груп (—СН = СН2) від нагрівання до 180—200° С утворюються поперечні зв'язки між окремими макромолекулами. Ця реакція називається термополімеризацією. На її основі добувають електроізоляційний матеріал ескапон.
Бічні вінільні групи в макромолекулах каучуку перешкоджають вільному переміщенню однієї макромолекули відносно іншої при низьких температурах, внаслідок чого каучук СК.Б має значно нижчу морозостійкість (—40° С), ніж натуральний (від —60 до —70° С). Отже, із збільшенням у полібутадієні ланок, з'єднаних у положенні 1,4, підвищується і морозостійкість полімеру.
Бутадієновий каучук має відносно малу міцність: 2,0—2,5 кгс/см2, а після вулканізації — 12—14 кгс/см2. Якщо в каучук ввести такий наповнювач, як сажа, то міцність на розрив гуми, виробленої на його основі, збільшується майже в 10 раз.
Хімічними властивостями полібутадієн і його похідні нагадують низькомолекулярні ненасичені сполуки. Внаслідок приєднання атомів або груп атомів за місцем подвійних зв'язків основного ланцюга або відгалужень спостерігаються значні зміни властивостей ненасичених полімерів. Під впливом кисню повітря відбувається деструкція, або «старіння» полімеру. Бутадієнові каучуки окислюються внаслідок приєднання кисню за місцем подвійних зв'язків основного ланцюга. Це може привести до утворення тричленних циклів, ланок, які містять пероксидні, гідропероксидні групи та поперечних кисневих містків між окремими ланцюгами макромолекул. Вінільні групи, що мають вигляд відгалужень, взаємодіють з киснем значно повільніше. Тому полімери з більшою кількістю бічних вінільних груп стійкіші проти дії кисню.
Реакція окислення ненасичених полімерів має важливе практичне значення, бо дає змогу визначити тривалість і умови експлуатації різних гумових виробів.
Щоб підвищити стійкість каучуків проти дії кисню повітря, їх піддають гідрогенізації:
Гідрогенізацію каучуків проводять у розчині, через який пропускають під тиском водень при температурі 150° С. Як каталізатор використовують нікель, нанесений на кізельгур. Активніше приєднують водень вінільні групи. Такий каучук після вулканізації, зберігаючи свої попередні властивості (еластичність, морозостійкість), набуває високої стійкості проти дії кисню і озону.