Сторінка
2
Для отримання індивідуальних БКК найбільш широко застосовують парафазне і рідкофазне окиснення відповідних вуглеводнів. У промисловості в значних масштабах методом парафазного окиснення на окиснованадієвих каталізаторах отримують тільки фталевий ангідрид і піромелітовий діангідрид (ПМДА), відповідно з нафталіну і дуролу. Вироблення ПМДА стримується дефіцитом сировини. При використанні різних вуглеводневих фракцій утворюються і суміші кислот, які важко розділити. Аналогічні суміші отримують при окисненні викопного вугілля, що є найбільш дешевою і доступною сировиною. Можливості промислового виробництва БКК останнім часом приділяється велика увага. Отримання БКК шляхом окиснення вугілля повітрям у водно-лужному середовищі перевірене в США на пілотній установці, в Японії створена установка по переробці вугілля продуктивністю 10 т на добу, дослідно-промислова установка створена також в Польщі, є проекти пілотних і дослідно-промислових установок в країнах СНД.
Незважаючи на велику кількість виконаних досліджень, промислове виробництво БКК з вугілля не освоєне по наступних основних причинах:
· складність апаратури і технології при окисненні молекулярним киснем у водно-лужному середовищі під тиском;
· відсутність прийнятної для промислових умов технології окислення азотною кислотою і іншими ефективними окислювачами;
· відсутність раціональної технології отримання індивідуальних кислот, їх сирих фракцій і сумішей;
· малий досвід впровадження вуглехімічних технологій.
Метод окиснювальної деструкції широко використовується для пізнання структурних особливостей різних твердих горючих копалин. Глибоке окиснення вугілля можна провести різними окиснювачами: киснем, озоном, перманганатом калію, азотною кислотою, перекисом водню, хлором, гіпохлорітом, окислом азоту і ін. Внаслідок глибокого окислення вугілля утворяться вода, окисел і двоокис вуглецю і інші гази, а також складна суміш органічних кислот.
Окислення вугілля азотною кислотою при нагріванні приводить до утворення СО і СО2, розчинних в азотній кислоті з'єднань, що являють собою суміші аліфатичних моно - і дікарбонових кислот, бензолкарбонових кислот, а також високомолекулярних ароматичних кислот. Встановлено, що із збільшенням ступеня вуглефікації гумітів вихід ароматичних полікарбонових кислот підвищується із 10 % для торфів до 80 % для антрацитів. При цьому вихід газоподібних оксидів і аліфатичних кислот відповідно меншає. При окисненні гумусового бурого вугілля також отримують бензолкарбонові кислоти, однак їх вихід не перевищує 15 - 20%, а в складі продуктів окиснення переважають СО2, щавлева і водоразчинні аліфатичні кислоти.
Вміст в складі продуктів окиснення бензолкарбонових і інших ароматичних кислот вважається прямим доказом наявності в структурі гумітів ароматичних фрагментів. При наявності конденсованих ароматичних структур в гумітах відбувається утворення мелітової (бензолгексакарбонової ) кислоти.
При окисненні ліптобіолітів Ткібульського і Ліповецького родовищ киснем повітря в лужному середовищі при температурі 230-270 0С і тиску 10 МПа отримано до 17 % щавлевої кислоти і до 46 % полікарбонових кислот, в яких до 68 % бензолкарбонових кислот і 10 % аліфатичних дікарбонових кислот. Це вказує на те, що в структурі смоляних тілець в значній кількості присутні фрагменти ароматичного характеру.
У складі продуктів окиснення сапропелю і сапропелітів присутні тільки аліфатичні моно - і дікарбонові кислоти. Це підтверджує, що в структурі сапропелевого вугілля практично відсутні ароматичні фрагменти.
У продуктах окиснення керогену Прибалтійського горючого сланцю також не знайдено ароматичних кислот. У той же час в продуктах окислення концентрату керогену кашпірського сланцю (Поволжжя) знайдена невелика кількість бензолкарбонових кислот, що пояснюється присутністю домішок гумусового матеріалу у волжських сланцях, що утворилися в Юрський період. Ці дані дозволили зробити висновок про те, що ароматичні структури в керогені або відсутні, або є в невеликій кількості.
Отримані на основі результатів окисення вугілля дані про наявність в них різних структурних фрагментів сьогодні підтверджені іншими хімічними, фізичними і фізико-хімічними методами.
ЛІТЕРАТУРA
1. Саранчук В.И., Айруни А.Т., Ковалев К.Е. Надмолекулярная организация, структура и свойства углей.- К.: Наукова думка.
2. Саранчук В.И., Бутузова Л.Ф., Минкова В.Н. Термохимическая деструкция бурых углей.- К.: Наукова думка, 1984.
3. Нестеренко Л.Л., Бирюков Ю.В., Лебедев В.А. Основы химии и физики горючих ископаемых.- К.: Вища шк., 1987.-359с.
4. Бухаркина Т.В., Дигуров Н.Г. Химия природных энергоносителей и углеродных материалов.-Москва, РХТУ им. Д.И. Менделеева,-1999.-195с.
5. Агроскин А. А., Глейбман В. Б. Теплофизика твердого топлива.-- М. Недра 1980.-- 256 с.
6. Глущенко И. М. Теоретические основы технологии твердых горючих ископаемых.-- К. : Вища шк. Головное изд-во, 1980.-- 255 с.
7. Еремин И. В., Лебедев В. В., Цикарев Д. А. Петрография и физические свойства углей. -- М. : Недра, 1980. -- 266 с.
8. Касаточкин В. И., Ларина Н. К. Строение и свойства природных углей.-- М : Недра, 1975.-- 159 с.
9. Раковский В. Е., Пигулееская Л. В. Химия и генезис торфа.--М. : Недра, 1978.--231 с.
10. Саранчук В. И. Окисление и самовозгорание угля.-- К. : Наук. думка, 1982.-- 166 с.
11. Стрептихеев А. А., Деревицкая В. А. Основы химии высокомолекулярных соединений.-- 3-е изд., перераб. и доп.-- М. : Химия, 1976.-- 436 с.
1 2