Назва реферату: Системи лінійних однорідних диференціальних рівнянь з сталими коефіцієнтами
Розділ: Математика
Завантажено з сайту: www.refsua.com
Дата розміщення: 21.01.2012

Системи лінійних однорідних диференціальних рівнянь з сталими коефіцієнтами

Система диференціальних рівнянь вигляду

де - сталі величини, називається лінійною однорідною системою з сталими коефіцієнтами. У матричному вигляді вона записується

.

1. Розв’язування систем однорідних рівнянь з сталими коефіцієнтами методом Ейлера.

Розглянемо один з методів побудови розв’язку систем з сталими коефіцієнтами.

Розв’язок системи шукаємо у вигляді вектора

.

Підставивши в систему диференціальних рівнянь, одержимо

Скоротивши на , і перенісши всі члени вправо, запишемо

Отримана однорідна система лінійних алгебраїчних рівнянь має розв’язок тоді і тільки тоді, коли її визначник дорівнює нулю, тобто

.

Це рівняння, може бути записаним у векторно-матричній формі

і воно називається характеристичним (чи віковим) рівнянням. Розкриємо його

.

Алгебраїчне рівняння -го ступеня має -коренів. Розглянемо різні випадки.

1. Всі корені характеристичного рівняння (власні числа матриці ) дійсні і різні. Підставляючи їх по черзі в систему алгебраїчних рівнянь

одержуємо відповідні ненульові розв’язки системи

, , … ,

що являють собою власні вектори, які відповідають власним числам , .

У такий спосіб одержимо - розв’язків

, , … , .

Причому оскільки -різні а - відповідні їм власні вектори, то розв’язки - лінійно незалежні, і загальний розв’язок системи має вигляд

.

Або у векторно - матричної формі запису

,

де - довільні сталі.

2. Нехай пара комплексно спряжених коренів. Візьмемо один з них, наприклад . Комплексному власному числу відповідає комплексний власний вектор

і, відповідно, розв’язок

Використовуючи залежність , перетворимо розв’язок до вигляду:

.

І, як випливає з властивості 4 розв’язків однорідних систем, якщо комплексна функція дійсного аргументу є розв’язком однорідної системи, то окремо дійсна і уявна частини також будуть розв’язками, тобто комплексним власним числам відповідають лінійно незалежні розв’язки

,.

3. Якщо характеристичне рівняння має кратний корінь кратності , тобто , то розв’язок системи рівнянь має вигляд

.

Підставивши його у вихідне диференціальне рівняння і прирівнявши коефіцієнти при однакових степенях, одержимо - рівнянь, що містять -невідомих. Тому що корінь характеристичного рівняння має кратність , то ранг отриманої системи . Уводячи довільних сталих і розв’язуючи систему, одержимо

, , .

2. Розв’язок систем однорідних рівнянь зі сталими коефіцієнтами матричним методом

Досить універсальним методом розв’язку лінійних однорідних систем з сталими коефіцієнтами є матричний метод. Він полягає в наступному. Розглядається лінійна система з сталими коефіцієнтами, що записана у векторно-матричному вигляді

.

Робиться невироджене перетворення , де вектор - нова невідома векторна функція. Тоді рівняння прийме вигляд

або .

Для довільної матриці завжди існує неособлива матриця , що приводить її до жорданової форми, тобто , де - жорданова форма матриці . І система диференціальних рівнянь прийме вигляд

.

Складемо характеристичне рівняння матриці

, або .

Алгебраїчне рівняння -го ступеня має коренів. Розглянемо різні випадки.

1. Нехай - дійсні різні числа. Тоді матриця має вигляд .

І перетворена система диференціальних рівнянь розпадається на - незалежних рівнянь

.

Розв’язуючи кожне окремо, отримаємо

.

Або в матричному вигляді

де .

Звідси розв’язок вихідного рівняння має вигляд . Для знаходження матриці треба розв’язати матричне рівняння

або ,

де - жорданова форма матриці . Якщо матрицю записати у вигляді

,

то для кожного з стовпчиків , матричне рівняння перетвориться до

, .

Таким чином, у випадку різних дійсних власних чисел матриця являє собою набір - власних векторів, що відповідають різним власним числам.

2. Нехай - комплексний корінь. Тоді відповідна клітка Жордана має вигляд

,

а перетворена система диференціальних рівнянь

Неважко перевірити, що розв’язок отриманої системи диференціальних рівнянь має вигляд

Або в матричному вигляді

Таким чином, комплексно-спряженим власним числам відповідає розв’язок де

3. Нехай - кратний корінь, кратності , тобто і йому відповідають лінійно незалежних векторів. Тоді клітка Жордана, що відповідає цьому власному числу, має вид

І перетворена підсистема, що відповідає власному числу , розпадається не дві підсистеми

.

.

Розв’язок першої знаходиться з використанням зазначеного в першому пункті підходу. Розглянемо другу підсистему. Запишемо її в координатному вигляді

Розв’язок останнього рівняння цієї підсистеми має вигляд

.

Підставимо його в передостаннє рівняння. Одержуємо

.

Загальний розв’язок лінійного неоднорідного рівняння має вигляд суми загального розв’язку однорідного і частинного розв’язку неоднорідних рівнянь, тобто

.

Загальний розв’язок однорідного має вигляд .

Частинний розв’язок неоднорідного шукаємо методом невизначених коефіцієнтів у вигляді

,

де - невідома стала. Підставивши в неоднорідне рівняння, одержимо

.

Звідси і загальний розв’язок неоднорідного рівняння має вигляд

.

Піднявшись ще на один крок нагору одержимо

.

Продовжуючи процес далі, маємо

.

Або у векторно - матричному вигляді

.

Додавши першу підсистему, одержимо

,

Для останніх двох випадків матриця знаходиться як розв’язок матричного рівняння

.